AMDT

Compiler Usage Guidelines
for
AMDG64 Platforms

Application Note

Publication # 32035 Revision: 3.22
Issue Date: November 2007

Advanced Micro Devices &\

© 2006-2007 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro Devices,
Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the
accuracy or completeness of the contents of this publication and reserves the right to make
changes to specifications and product descriptions at any time without notice. The infor-
mation contained herein may be of a preliminary or advance nature and is subject to
change without notice. No license, whether express, implied, arising by estoppel or other-
wise, to any intellectual property rights is granted by this publication. Except as set forth
in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever,
and disclaims any express or implied warranty, relating to its products including, but not
limited to, the implied warranty of merchantability, fitness for a particular purpose, or
infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as compo-
nents in systems intended for surgical implant into the body, or in other applications
intended to support or sustain life, or in any other application in which the failure of
AMD’s product could create a situation where personal injury, death, or severe property or
environmental damage may occur. AMD reserves the right to discontinue or make changes
to its products at any time without notice.

Trademarks

AMD, the AMD Arrow logo, the AMD64 logo, AMD Athlon, AMD Opteron, and combinations thereof, are trademarks of Advanced
Micro Devices, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

MMX is a trademark, and Pentium is a registered trademark, of Intel Corporation.

SPEC is a registered trademark of the Standard Performance Evaluation Corporation (SPEC).
Linux is a registered trademark of Linus Torvalds.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

Contents

Revision History 11

Chapter1 Introductionc.iuiiiuiiiininernereeseoseosessosssoassnssnsnns 13
1.1 AUIENCE . . .ottt 13
1.2 Intentof Document i i 13
1.3 Definitions, Abbreviations, and Notation, 14
1.4 Additional Documents 14

Chapter 2 List of Compiler Vendors for AMD Processorscoviviiiiinenenn. 15
2.1 Compilers (64-Bit) for Linux®o 15

2.1.1 GO 15
2.1.2 Intel . .o 16
2.13 PathScale 16
2.14 PG 16
2.2 Compilers (64-Bit) for Microsoft® Windows® 16
221 Intel . .o 16
222 Microsoft® 16
223 PG 16
2.3 Compilers (64-bit) for Solaris 17
2.3.1 SUN . 17
2.4 Compilers (32-Bit) for Linux® o 17
24.1 GO 17
242 Intel .. 17
243 PathScale 17
244 PG 18
2.5 Compilers (32-Bit) for Microsoft® Windows® 18
25.1 Intel . .o 18
25.2 Microsoft® 18
253 PG 18

Contents 3

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007
2.6 Compilers (32-bit) for Sun Solaris 18
2.6.1 SUN . 18
Chapter 3 Performance-Centric Compiler Switcheso, 19
3.1 PGI Compilers (32- and 64-Bit) for Linux® and Microsoft® Windows® 19
3.1.1 Invocation Commands 19
3.1.2 General Performance Switches L. 20
3.1.3 Optimization Switches 20
3.14 Linking with ACML 21

3.2 GCC Compilers (64-Bit) for Linux® 22
3.2.1 Recommended Compiler Versions 22
3.2.2 Invocation Commands 23
3.2.3 Generic Performance Switches L. 23
324 Other Switches 24

3.3 Intel Compilers (64-Bit) for Linux® 25
3.3.1 Invocation Commands 25
332 Generic Performance Switches L. 25
333 Other Switches 25

34 PathScale Compilers (64-Bit) for Linux® 26
34.1 Invocation Commands 26
342 Generic Performance Switches L. 26
343 Other Switches 26

3.5 Intel Compilers (64-Bit) for Microsoft® Windows® 27
3.5.1 Invocation Commands 27
352 Generic Performance Switches L. 27
353 Other Switches 27

3.6 Microsoft® Compilers (64-Bit) for Microsoft® Windows® 28
3.6.1 Invocation Commands i 28
3.6.2 Generic Performance Switches L. 28
3.6.3 /favor Performance Switch 28

3.7 Sun Compilers (64-bit) for Solaris 29

4 Contents

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms
3.7.1 Invocation Commands 29
3.7.2 Generic Performance Switches L 29
3.7.3 Other Switches 29

3.8 GCC Compilers (32-Bit) for Linux® 30
3.8.1 Recommended Compiler Versions 30
3.8.2 Invocation Commands i 31
3.8.3 Generic Performance Switches 31
3.84 Other Switches e 32

3.9 Intel Compilers (32-Bit) for Linux® 34
3.9.1 Invocation Commands 34
3.9.2 Generic Performance Switches 34
393 Other Switches e 34

3.10 PathScale Compilers (32-Bit) for Linux® 35
3.10.1 Invocation Commands i 35
3.10.2 Generic Performance Switches 35
3.10.3 Other Switches 35

3.11 Intel Compilers (32-Bit) for Microsoft® Windows® 36
3.11.1 Invocation Commands i 36
3.11.2 Generic Performance Switches 36
3.11.3 Other Switches 36

3.12 Microsoft® Compilers (32-Bit) for Microsoft® Windows® 37
3.12.1 Invocation Command 37
3.12.2 Generic Performance Switches 37
3.12.3 Other Switches 37

3.13 Sun Studio Compilers (32-bit) for Solaris 38
3.13.1 Invocation Commands 38
3.13.2 Generic Performance Switches L. 38
3.13.3 Other SWitches e 39

Chapter 4 Troubleshooting and Portability Issueso, 41

4.1 PGI Compilers for Linux® and Microsoft® Windows® 41

Contents 5

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007
4.1.1 Interoperability Between Languages 41
4.1.2 Run-Time Errors 43
4.1.3 Compiled and Linked Code Generates Unexpected Results 43
4.14 Program Gives Unexpected Results or Terminates Unexpectedly 44

4.2 GCC Compilers (64-Bit) for Linux® i ... 44
4.2.1 Compilation Errors 44
422 Link-Time Errors e 45
423 Run-Time Errors 45
424 Compiled and Linked Code Generates Unexpected Results 45
4.2.5 Program Gives Unexpected Results or Exception Behavior 45

4.3 Intel Compilers (64-Bit) for Linux® 46

4.4 PathScale Compilers (64-Bit) for Linux® 46

4.5 Intel Compilers (64-Bit) for Microsoft® Windows® 46

4.6 Microsoft® Compilers for (64-Bit) Microsoft® Windows® 47
4.6.1 Compilation Errors 47
4.6.2 Run-Time Errors 47
4.6.3 Compiled and Linked Code Generates Unexpected Results 47
4.6.4 Program Gives Unexpected Results or Exception Behavior 47

4.7 Sun Compilers (64-bit) for Solaris 48

4.8 GCC Compilers (32-Bit) for Linux® 48
4.8.1 Compilation Errors 48
4.8.2 Link-Time Errors 48
4.8.3 Run-Time Errors 48
4.84 Compiled and Linked Code Generates Unexpected Results 49
4.8.5 Program Gives Unexpected Results or Exception Behavior 49

4.9 Intel Compilers (32-Bit) for Linux® 50
4.9.1 Compilation Errors 50
49.2 Link-Time Errors 50
4923 Compiled and Linked Code Generates Unexpected Results 50
494 Program Terminates Unexpectedly 51

6 Contents

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms
4.10 PathScale Compilers (32-Bit) for Linux® 51
4.11 Intel Compilers (32-Bit) for Microsoft® Windows® 51

4.11.1 Compilation Errors 51
4.11.2 Compiled and Linked Code Generates Unexpected Results 51
4.11.3 Program Terminates Unexpectedly 52
4114 Program Gives Unexpected Results or Exception Behavior 52
4.12 Microsoft® Compilers (32-Bit) for Microsoft® Windows® 52
4.12.1 Run-Time Errors 53
4.12.2 Compiled and Linked Code Generates Unexpected Results 53
4.12.3 Program Gives Unexpected Results or Exception Behavior 53
4.13 Sun Compilers (32-bit) for Solaris i 54
4.13.1 Compilation Errors 54
4.13.2 Compiled and Linked Code Generates Unexpected Results 54

Chapter 5 Peak Options for SPEC®-CPU Benchmark Programs 55

5.1 PGI Release 7.1 32- and 64-Bit Compilers for Linux® ... 55
5.1.1 Base Command-line Optionsuutinintniennennennnn. 55
5.1.2 Peak Command-line Options, 57

52 PGI Release 7.1 Compilers (32- and 64-Bit) for Microsoft® Windows® 59
5.2.1 Invoking the Compilers 59
5.2.2 Base Command-line Optionsoutiniiutnnennennennnn. 59
523 Peak Command-line Options, 62

5.3 SuSE GCC 4.2.0(64-Bit) C/C++ Compiler for Linux® ... 64

54 Pathscale EKO 3.0 C/C++ Compiler (64-Bit) for Linux® ... 66

5.5 Pathscale EKO 3.0 Fortran Compiler (64-bit) for Linux® ... 67

5.6 Intel 9.0 C/C++ Compiler for (32-Bit) Microsoft® Windows® 68

5.7 Sun C/C++ Compiler (64-bit) for Solaris 69

5.8 Sun Fortran Compiler (64-bit) for Solaris 69

Contents 7

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

8 Contents

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

Tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.

Table 13.
Table 14.
Table 15.

Table 16.
Table 17.

Summary of COMPILETScocuuiiiiiiiiiiiiiiie et 15
GCC Versions Included with Linux® DiStributionsco.ooveeeeeeeeeeeeeeeeseererrseeane. 22
Recommended Option Switches for 64-Bit GCC Compilers for Linuxccceeuee..e. 23
Profile Guided Optimization for 64-Bit GCC Compilers for Linux........ccccceeeercveennenne. 24
GCC Versions Included with Linux Distributions............cccceeveeniinieiniinienieenieeieene 30
Recommended Option Switches for 32-Bit GCC Compilers for Linuxccceeueeeee. 31
Profile Guided Optimization for 32-Bit GCC Compilers for Linux........ccccceoeereveennnne. 32
Unsafe Architecture Switches in 32-Bit Intel Compilers for Linuxccccceevevieenneenn. 51
Unsafe Architecture Switches in 32-Bit Intel Compilers for Microsoft® Windows®.....52
Best-Known Peak Switches for the 64-Bit PGI Compilers for Linuxccceceeveueenne. 57

Best-Known Peak Switches for the 64-Bit PGI Compilers for Microsoft Windows......62
Best-Known Peak Switches for the 64-Bit SuSE GCC 3.3.3 C/C++

ComPILEr fOI LANUX ..eeeuiiiiiiiiiiie ettt ettt et sttt e e eareeens 64
Best-Known Peak Switches for the Pathscale 1.4 C/C++ Compiler for Linux 66
Best-Known Peak Switches for the 64-bit Pathscale 2.4 Fortran Compiler for Linux...67
Best-Known Peak Switches for the 32-Bit Intel 8.0 C/C++ Compiler for

MICTOSOft WINAOWS ..ottt ettt 68
Best-Known Peak Switches for the 64-bit Sun C/C++ Compilers for Solaris................ 69
Best-Known Peak Switches for the 64-bit Sun Fortran Compiler for Solaris 70

Tables 9

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

10 Tables

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

Revision History

Date Rev. | Description

November 2007 | 3.22 | Made minor corrections. Seventh public release.

September 2007 | 3.21 | Sixth public release.

August 2006 3.19 | Fifth public release.

June 2005 3.18 | Fourth public release.
Updated generic performance switches for Sun Solaris in Section 3.8, Section 3.16,
and Section 4.16.

June 2005 3.16 | Third public release.

February 2005 | 3.09 | Second public release.

October 2004 3.00 | Initial public release.

11

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

12

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

Chapter 1 Introduction

Independent software vendors (ISVs) and end-users of platforms for the AMD Athlon™ 64, AMD
Opteron™, and AMD Family 10h processors have a significant interest in porting and tuning their
applications for the AMDG64 architecture. Because several compilers are available for AMD64
architecture, evaluating them to choose the best-suited compiler for an application is a non-trivial
task. This document provides a quick reference for optimization and portability switches for some
commonly used compilers. The intent is to provide starting guidelines for porting and performance
tuning applications and for increased performance of compiled code. The user should refer to the
user’s guides for specific compilers for further tuning help or for troubleshooting problems that are
beyond the simple diagnostic steps listed here.

New compilers of interest are always on the horizon. This document may be updated when new
compilers arrive or when the current compiler switches change significantly in their newer versions.

1.1 Audience

Theoretically, benchmarks should provide clear, unequivocal information that guides end-users in
making choices about software and hardware. Reality is somewhat less than ideal; therefore,
benchmarks can be quite subjective and prone to interpretation. Benchmarks are guidelines, not
absolute answers and benchmarking can be a tricky business, especially when it comes to compilers.
Developers can gain insight about the relative performance of different tools, by comparing results in
a controlled environment. To be valid, benchmark source code must be available, and the testing
conditions clearly stated. It is not methodologically sound to use a limited data set generated by a
circumscribed suite of benchmarks demonstrating specific aspects of code generation to predict
general compiler performance.

This document is intended for ISVs, SIs and end-users of the AMD Athlon™ 64, AMD Opteron™
and AMD Family 10h processor-based platforms who wish to port and tune their applications for the
AMD64 architecture.

1.2 Intent of Document

This document provides a quick reference for optimization and portability switches for some
commonly used compilers for AMD Athlon™ 64, AMD Opteron™ and AMD Family 10h processor-
based platforms.

Performance models of applications enable high-performance computing (HPC) system designers
and IT to gain insight into the optimal hardware for end-user applications, giving valuable
information into the components of hardware, improving applications performance, and inform
machine procurement and design. Real-world applications are currently the preferred method for
measuring performance, whereas benchmarks are required for the discovery of interest or "door-

Chapter 1 Introduction 13

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

openers". Standard Performance Evaluation Corporation (SPEC) designed CPU2006 to provide a
comparative measure of computation-intense performance across the widest range of hardware using
workloads developed from real user applications. SPECcpu2006 is CPU-intensive—stressing a
system's processor, memory subsystem and compiler.

This document provides a quick reference for optimization and portability switches commonly used
when invoking compilers for AMD Athlon™ 64, AMD Opteron™ and AMD Family 10h processor-
based platforms. SPECcpu2006 provides some insight into which command line options to utilize for
certain applications. Chapter 5, Peak Options for SPEC®-CPU Benchmark Programs, on page 55
documents the compiler switches utilized on the compact application components representing the
SPECcpu2006 benchmark suite.

1.3 Definitions, Abbreviations, and Notation

Switches and invocation commands are highlighted in bold text.

1.4 Additional Documents

Other resources for developers working with 64-bit operating systems include the following.

* Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ Processors,
order# 25112

o System V Application Binary Interface (AMD64 Architecture Processor Supplement)
http://www.amd64.org/documentation

e PGI Compiler User’s Guides: http.//www.pgroup.com/resources/docs.htm

* Intel Compiler Manuals:
http://www.intel.com/software/products/compilers/clin/docs/manuals.htm
http://www.intel.com/software/products/compilers/flin/docs/manuals.htm
http://www.intel.com/software/products/compilers/cwin/docs/manuals.htm
http://www.intel.com/software/products/compilers/fwin/docs/manuals.htm

+ Microsoft® Windows® AMD64 Application Binary Interface
e MSDN: http://msdn.microsoft.com/

* GNU Compiler Collection: http://gcc.gnu.org

e GCC Online Documentation: http://gcc.gnu.org/onlinedocs/

* Sun Studio Documentation: http://developers.sun.com/prodtech/cc/reference/docs/index. html

14 Introduction Chapter 1

http://www.amd64.org/documentation
http://www.pgroup.com/resources/docs.htm
http://www.intel.com/software/products/compilers/clin/docs/manuals.htm
http://www.intel.com/software/products/compilers/flin/docs/manuals.htm
http://www.intel.com/software/products/compilers/cwin/docs/manuals.htm
http://www.intel.com/software/products/compilers/fwin/docs/manuals.htm
http://msdn.microsoft.com/
http://gcc.gnu.org
http://gcc.gnu.org/onlinedocs/
http://developers.sun.com/prodtech/cc/reference/docs/index.html

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

Chapter 2 List of Compiler Vendors for AMD
Processors

The compiler vendors listed in this chapter are discussed in detail in subsequent chapters of this
application note. This is not a comprehensive list of all compiler vendors for AMD Athlon™ 64,
AMD Opteron™ and AMD Family 10h processors.

Table 1. Summary of Compilers] lists the compiler vendors discussed in this document and shows
whether a vendor provides 64-bit compilers, 32-bit compilers, or both for the Linux®, Microsoft®
Windows®, or Sun Solaris platforms.

Table 1. Summary of Compilers

Compiler Vendor Compiler Platform
Linux® Microsoft® Windows® Sun Solaris
PGI 64-bit and 32-bit 64-bit and 32-bit —
Sun 64-bit and 32-bit - 64-bit and 32-bit
GCC 64-bit and 32-bit — 64-bit and 32-bit
Intel 64-bit and 32-bit 64-bit and 32-bit -
PathScale 64-bit and 32-bit - -
Microsoft® - 64-bit and 32-bit -

2.1 Compilers (64-Bit) for Linux®

The following companies provide 64-bit compilers for Linux.

211 GCC

GCC provides C, C++, and Fortran compilers for AMD64 architecture-based systems running the
Linux or the Sun Solaris operating systems. This application note, however, does not discuss GCC
compilers for Sun Solaris; this discussion is limited to the discussion of GCC compilers for Linux.
Different Linux distributions offer different versions of the GCC compilers. This application note
focuses on the recommended compilers for the following major Linux distributions:

* SuSE Linux Enterprise Server 8
e SuSE Linux Enterprise Server 9
e SuSE Linux Enterprise Server 10
e SuSE Linux 10.1

e SuSE Linux 10.2

Chapter 2 List of Compiler Vendors for AMD Processors 15

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

* Red Hat Enterprise Linux 3
* Red Hat Enterprise Linux 4

This application note also briefly discusses the GCC 4.2 compiler, which is the current GCC compiler
from the Free Software Foundation (FSF).

2.1.2 Intel

Intel provides C, C++, and Fortran compilers for EM64T and compatible architecture-based systems
running the Linux operating systems. The current version (as of August 2007) is 10.0.

2.1.3 PathScale

PathScale provides C, C++, and Fortran compilers for AMD64 architecture-based systems running
the Linux operating system. The current version (as of August 2007) is 3.0.

21.4 PGI

The Portland Group (PGI) Toolkits are composed of high performance C, C++, and/or Fortran
Compiler(s), a debugger, and a performance profiler for 32-bit and 64-bit AMD64 and EM64T
processor-based Linux. The latest PGI Edition 7 provides leading-edge application performance on
AMD64 next-generation systems and supports features like auto-parallelization, OS-native
multithreading, OpenMP multithreading models, and MPI programming for AMD64 architecture-
based multicore shared-memory and distributed-memory cluster-based systems. The current version
(as of Sept 2007) is PGI Release 7.1.

2.2 Compilers (64-Bit) for Microsoft® Windows®

The following companies provide 64-bit compilers for Microsoft Windows.

2.2.1 Intel

Intel provides C/C++ and Fortran compilers for EM64T and compatible systems running the
Microsoft Windows operating system. The current version (as of August 2007) is 10.0.

2.2.2 Microsoft®

Microsoft provides C/C++ compilers for AMD64 architecture-based systems running the Microsoft
Windows operating system. The current version is Visual Studio 2008.

2.2.3 PGl

The Portland Group (PGI) Toolkits are composed of high performance C, C++ and/or Fortran
Compiler(s), a debugger and a performance profiler for 32-bit and 64-bit AMD64 and EM64T
processor-based Windows platforms. The latest PGI Edition 7 provides leading-edge application

16 List of Compiler Vendors for AMD Processors Chapter 2

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

performance on AMD64 next-generation systems and supports features like auto-parallelization, OS
native multithreading, OpenMP multithreading models, and MPI programming for AMD64
architecture-based multicore shared-memory and distributed-memory cluster-based systems. The
current version (as of Sept 2007) is PGI Release 7.1.

2.3 Compilers (64-bit) for Solaris

The following companies provide 64-bit compilers for x86 Solaris.

2.3.1 Sun

Sun provides C, C++, and Fortran compilers for the AMDG64 architecture-based systems running the
Sun Solaris operating system. The current version (as of August 2007) is 5.9 and comes in the Sun
Studio 12 developer tool suite.

24 Compilers (32-Bit) for Linux®

The following companies provide 32-bit compilers for x86 Linux. These compilers also run on 64-bit
Linux Operating systems, running on AMD Athlon™ 64 processor-based platforms,
AMD Opteron™ processor-based platforms, or AMD Family 10h processor-based platforms.

241 GCC

The GNU Compiler Collection (GCC) provides C, C++, and Fortran compilers for x86 Linux and
Sun Solaris. This application note, however, does not discuss the GCC compilers for Sun Solaris; it
discusses only GCC compilers for Linux. Different Linux distributions offer different versions of the
GCC compiler. This application note focuses on the recommended compilers for the following major
Linux distributions for workstations and servers—SuSE Linux Enterprise Server 8, SuSE Linux
Enterprise Server 9, SuSE Linux Enterprise Server 10, SuSE Linux 10.1, SuSE Linux 10.2, Red Hat
Enterprise Linux 3 and Red Hat Enterprise Linux 4. This application note also briefly discusses the
GCC 4.2 compiler, which is the current GCC version from the Free Software Foundation (FSF).

2.4.2 Intel

Intel provides C, C++, and Fortran compilers for x86 Linux. The current version (as of August 2007)
is 10.0. This document also talks about two previous versions of the compiler, 9.1 and 8.1, because
they are comparable in performance to the current version (when run on AMD platforms) and are still
in use.

2.4.3 PathScale

PathScale provides C, C++, and Fortran compilers for x86 Linux. The current version (as of August
2007) is 3.0.

Chapter 2 List of Compiler Vendors for AMD Processors 17

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

244 PGI

The Portland Group (PGI) Toolkits are composed of high performance C, C++, and/or Fortran
Compiler(s), a debugger, and a performance profiler for 32-bit and 64-bit AMD64 and EM64T
processor-based Linux. The latest PGI Edition 7 provides leading-edge application performance on
AMD64 next-generation systems and supports features like auto-parallelization, OS native
multithreading, OpenMP multithreading models, and MPI programming for AMD64 architecture-
based multicore shared-memory and distributed-memory cluster-based systems. The current version
(as of September 2007) is PGI Release 7.1.

2.5 Compilers (32-Bit) for Microsoft® Windows®

The following companies provide 32-bit compilers for Microsoft Windows.

2.5.1 Intel

Intel provides C, C++ and Fortran compilers for x86 Microsoft Windows. The current version (as of
August 2007) is 10.0 This document also talks about two previous versions of the compiler, 9.1 and
8.1, because they are comparable in performance to the current version and are still in use.

2.5.2 Microsoft®

Microsoft provides C/C++ compilers for x86 Microsoft Windows. The current version is Microsoft
Visual Studio 2008.

253 PGl

The Portland Group (PGI) Toolkits are composed of high performance C, C++, and/or Fortran
Compiler(s), a debugger, and a performance profiler for 32-bit and 64-bit AMD64 and EM64T
processor-based Windows platforms. The latest PGI Edition 7 provides leading-edge application
performance on AMD64 next-generation systems and supports features like auto-parallelization, OS
native multithreading, OpenMP multithreading models, and MPI programming for AMD64
architecture-based multicore shared-memory and distributed-memory cluster-based systems. The
current version (as of Sept 2007) is PGI Release 7.1.

2.6 Compilers (32-bit) for Sun Solaris

The following companies provide 32-bit compilers for Sun Solaris.

2.6.1 Sun

Sun provides C, C++, and Fortran compilers for x86 Solaris operating system. The current version (as
of August, 2007) 1s 5.9 and comes in the Sun Studio 12 developer tool suite.

18 List of Compiler Vendors for AMD Processors Chapter 2

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

Chapter 3 Performance-Centric Compiler
Switches

This chapter describes the various switches that can be useful for individual compilers. For each
compiler, a list of generally recommended performance switches is provided. This list is further
augmented by other switches that could prove beneficial for certain code bases.

3.1 PGl Compilers (32- and 64-Bit) for Linux® and
Microsoft® Windows®

The Portland Group (PGI) high performance C, C++, and Fortran compilers (PGCC, PGC++,
PGHPEF, PGF95, PGF77) and program development tools (PGDBG debugger and PGPROF profiler)
optimize code for 32-bit and 64-bit AMD64 and EM64T processor-based Linux® and Microsoft
Windows ™ platforms. PGI Edition 7 provides local and global optimizations, loop optimization
(unrolling, vectorization, and parallelization), inter-procedural analysis and optimization, and
function inlining on AMD64 single-, dual- and quad-core systems. PGI Tools support parallel
programming features like auto-parallelization, OS native multithreading, OpenMP multithreading
models, and MPI programming for AMD64 architecture-based multicore shared-memory and
distributed-memory cluster-based systems. The current version (as of September 2007) is PGI
Release 7.1. All the options described in this section apply to PGI Release 7.1.

3.1.1 Invocation Commands

The following commands invoke specific compilers and tools:

* pgcc invokes the PGI C compiler.

e pgcepp (pgCC) invokes the PGI C++ compiler.

e pgf77 invokes the PGI Fortran 77 compiler.

e pgf95 invokes the PGI Fortran 90/95 compiler.

* Pghpf invokes the PGI High-performance Fortran Compiler
* pgdbg invokes the PGDBG source code debugger

* pgfrof invokes the PGPROF performance profiler

Note: Invoking PGI compilers within BASH on Windows platforms is case insensitive, therefore
using pgCC will invoke the PGI C compiler (i.e. pgCC is equivalent to pgcc).

Chapter 3 Performance-Centric Compiler Switches 19

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

3.1.2 General Performance Switches

To get a program running, start by compiling and linking without optimization. Use the optimization
level -O0 or select -g to perform minimal optimization. At this level, you can debug a program easily
and isolate any coding errors exposed during porting to x86 or AMD64 platforms. Use option -tp (i.e.
target processor) to specify the target architecture. Options -tp k8-64 and -tp k8-64e result in the
generation of code supported on and optimized for AMDG64 processors. Edition 7 supports AMD
Opteron quad-core processor with options -tp barcelona-64 to generate 64-bit code and -tp
barcelona to generate 32-bit code.

Note: The 64-bit PGI compiler can generate 32-bit binaries.

To get started quickly with optimization, with any PGI compiler use options -fast and -Mipa=fast.
For C++ programs, add -Minline=levels:10 --no_exceptions (C++ program compiled with
--no_exceptions will fail if the program uses exception handling). Beginning in Edition 7 the -fast
option became synonymous with the -fastsse option, and the optimizations performed by -fast in
previous releases were placed under the -nfast option.

Note: The -fastsse option is still necessary to compile 32 bit code.

Generally, further significant performance gains can be realized. However, individual optimizations
can sometimes cause slowdowns depending on coding style. Optimization flags most likely to further
improve performance are-O3, -Mpfi/-Mpfo, -Minline, and on targets with multiple processors
-Mconcur,

The --zc_eh option allows zero-cost exception handling for C++.

For C++ BASE optimization, use --zc_eh with -Mipa=fast,inline and -Msmartalloc=huge. The
huge flag enables the use of huge pages if the OS is configured to provide them.

3.1.3 Optimization Switches

In addition to the -tp (i.e., target processor) switch, the following list of switches may improve the
performance of the program. It is worth experimenting with these switches, but care must be used to
ensure performance improvements.

Local and Global Optimization using -O. Specify any of the following optimization level
(-Olevel) options.

-0O0—(level-0) specifies no optimization. This optimization level generates a basic block for each
language statement. This is useful for debugging since there is a direct correlation between the
program text and the code generated.

-O1 (level-1) specifies local optimization. This optimization level performs scheduling of basic
blocks and allocates registers.

-02 (level-2) specifies global optimization. This optimization level performs all level-one local
optimization as well as level-two global optimization.

20 Performance-Centric Compiler Switches Chapter 3

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

-03 (level-3) specifies aggressive global optimization. This optimization level performs all level-one
and level-two optimizations and enables more aggressive hoisting and scalar replacement
optimizations that may or may not be profitable.

-04 (level-4) performs all level-1, level-2, and level-3 optimizations and enables hoisting of guarded
invariant floating point expressions.

Loop Optimization using -Munroll, -Mvect, and -Mconcur. Loop performance may be
improved through vectorization or unrolling options, and, on systems with multiple processors, by
using parallelization options.

-Munroll unrolls loops. Executing multiple instances during each loop iteration reduces branch
overhead, improving execution speed by creating better opportunities for instruction scheduling.
Using -Munroll sub-options c:number and n:number, or using -Mnounroll can control whether
and how loops are unrolled.

-Mvect option triggers the vectorizer to scan code searching for loops that are candidates for high-
level transformations such as loop distribution, loop exchange, cache tiling, and idiom recognition
(replacement of a recognizable code sequence, such as a reduction loop, with optimized code
sequences or function calls). The vectorizer transformation can be controlled by arguments to the
-Mvect option. By default, -Mvect without sub-options is equivalent to -Mvect=assoc,
cachesize:262144. Vectorization sub-options are assoc, cachesize:number, sse, and prefetch.

-Mconcur option instructs the compiler to scan code searching for loops that are candidates for auto-
parallelization. -Mconcur must be used at compile-time and link-time. The parallelizer performs
various operations that are controlled by arguments to the -Mconcur option. By default, -Mconcur
without sub-options is equivalent to -Mconcur=dist:block. Auto-Parallelization sub-options are
altcode:number, dist:block, dist:cycle, cncall, noassoc, and innermost.

Interprocedural Analysis and Optimization using -Mipa. Interprocedural analysis (IPA) can
improve performance for many programs. To compile programs with IPA use an aggregated
suboption such as -Mipa=fast. Refer to the PGI Compiler User s Guide for available sub-options.

Function Inlining using -Minline. Inlining allows a call to a function or subroutine to be
replaced by a copy of the body of that function or subroutine. Several -Minline sub-options determine
the selection criteria for functions to be inlined. Available sub-options are except:func, name:func,
size:number, levels:number, and lib:filename.ext. Note that in C++ releases prior to 6.2, function
inlining does not occur unless the -Minline switch is used. Beginning with release 6.2 inlining will
occur automatically for C++ functions specified by means of the inline keyword or methods defined
in the body of the class. Also, if C++ exceptions are not used, the --no_exceptions flag improves
performance.

3.1.4 Linking with ACML

Due to the strategic importance of the AMD multi-core processor architecture, libraries are in place to
assist developers in porting software to AMD processors. AMD Core Math Library (ACML) is
designed to “squeeze” the greatest possible performance from AMD multi-core platforms and is
integrated in all PGI Toolkits. As the number of cores increases over time, future processor

Chapter 3 Performance-Centric Compiler Switches 21

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

innovations are automatically incorporated into applications through the use of ACML. The AMD
Core Math Library (ACML) revision 4.0, built with PGI Edition 7, includes BLAS, LAPACK, FFT
and RNG routines that are optimized for AMD Athlon™ 64 and AMD Opteron™ processors. If the
program uses these routines, using ACML in place of generic C/Fortran implementation may greatly
improve the performance. For additional details on how to install this library and use it, please refer to
the ACML User Guide available at http://developer.amd.com/assets/acml_userguide.pdf.

3.2 GCC Compilers (64-Bit) for Linux®

The 64-bit GCC compilers can be installed and run on 64-bit Linux®, AMD Athlon™ 64,
AMD Opteron™ and AMD Family 10h processors. GCC compilers vary slightly, depending on the
Linux distribution. This section discusses the following GCC compilers.

* gcc 4.2.0 from Free Software Foundation (FSF)
e gcc 4.2.0 from SuSE Linux Enterprise Server 10
e gcc 4.2.0 supplied with Red Hat Enterprise Linux 4

3.2.1 Recommended Compiler Versions

The Linux distributions from SuSE and Red Hat include a default 64-bit GCC compiler and optional
GCC compilers. From a performance standpoint, the optional compilers are recommended. Table 2,
below, shows the recommended (optional) compiler versions for the current SuSE and Red Hat
distributions. These optional compilers are included on product CDs and DVDs.

Table 2. GCC Versions Included with Linux® Distributions

Default GCC
Linux® Distribution Compiler Recommended (Optional) Compiler Version
Version
Red Hat Enterprise Linux 4 41.0 gce-ssa
SuSE Linux Enterprise 41.0 4.2.0
Server 10
Red Hat Enterprise Linux 4 3.41 No optional compiler available with the distribution. The
default compiler is the recommended compiler.
SuSE Linux 10.1 41.0 4.2.0
SuSE Linux Enterprise 3.3.3 4.2.0
Server 10

Table 2, “GCC Versions Included with Linux® Distributions,” identifies the recommended optional
compilers by their package names. The Red Hat distribution media include the Red Hat Package
Managers. The gcc-ssa package is installed in /usr/bin by default, while gcc-33 is installed in
/opt/gcc33/.

22 Performance-Centric Compiler Switches Chapter 3

http://developer.amd.com/assets/acml_userguide.pdf

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

In addition to the supplied compilers, the user can also experiment with the latest GCC compilers
(version 3.4, 4.0, and 4.2.0) from the Free Software Foundation (FSF). Users probably cannot expect,
however, the same level of support for FSF GCC compilers as they can expect for supplied compilers.

3.2.2 Invocation Commands
The following commands invoke specific compilers:
gcc invokes the C compilers for gec 4.1, 3.4.1, 3.4, 3.3.4 and gcc 3.3.3.
gce-ssa invokes the gee-ssa C compiler.
gfortran invokes the Fortran 90/95 compiler for gcc 4.1.
g++ invokes the C++ compilers for gec 4.1, 3.4.1, 3.4, 3.3.4 and gcc 3.3.3.
g++-ssa invokes the gcc-ssa C++ compiler.
g77 invokes the Fortran 77 compiler for gcc 3.4.1, 3.4, 3.3.4 and gcc 3.3.3.
g77-ssa invokes the gcc-ssa Fortran 77 compiler.
The user may have to specify the full path of the invocation command for using the optional GCC
compilers. For example, the optional SLES8 GCC compiler will be invoked by /opt/gcc33/bin/gcc.

3.2.3 Generic Performance Switches

Different optimization switches are recommended for 64-bit SUSE GCC 3.3.3, Red Hat gcc-ssa, and
the FSF gcc 4.1 compilers. Table 3 shows the recommended switches for these compilers.

Table 3. Recommended Option Switches for 64-Bit GCC Compilers for Linux®
Compiler Version Recommended Optimization Switches
SuSE GCC 3.3.3 -O83 -ffast-math -funroll-all-loops

(for C/C++ and Fortran) and
Red Hat gcc-ssa (C/C++ and Fortran)

FSF GCC 3.4 -O83 -ffast-math -funroll-all-loops -fpeel-loops -ftracer
(for C/C++ and Fortran) and -funswitch-loops -funit-at-a-time

Red Hat GCC 3.4.1

SuSE GCC 4.2 -O83 -ffast-math -funroll-all-loops -fpeel-loops

FSF GCC 4.2 (for C/C++ and Fortran) |-O3 -ffast-math -funroll-all-loops -ftree-vectorize

The -O3 switch turns on several general optimizations.
Using the -ffast-math switch allows the compiler to use a fast floating point model.

The -funroll-all-loops causes all loops to be unrolled and makes code larger and could bring
improvement in speed.

Some of the options implied by -O3 in SuSE GCC 3.3.3 and the gcc-ssa compilers are not implied by
the GCC 3.4 compiler and should be added for additional performance improvement. These are
-funit-at-a-time, -fpeel-loops, -ftracer, and -funswitch-loops.

Chapter 3 Performance-Centric Compiler Switches 23

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

The GCC 4.0 and later version compilers can perform loop vectorization by using the
-ftree-vectorize flag.

3.2.4 Other Switches

In addition to the switches mentioned in Table 3 on page 23, the following list of switches may also
improve the program performance. It is worth experimenting with these switches.

-march=k8. For the FSF GCC 4.2.0 SuSE 4.2.0and Red Hat 4.2.0 compilers, using this switch may
give you a performance advantage in some cases.

-march=amdfam10. For applications to be executed on AMD Family 10h processor-based
platforms, this switch results in better performance.

Note: The amdfaml0 option is not available on all GCC compiler releases. See your compiler
documentation for further information.

Profile Guided Optimization. The 64-bit GCC compiler also allows profile guided optimization.
Table 4 shows the profile guided optimization switches for the different GCC compilers.

Table 4. Profile Guided Optimization for 64-Bit GCC Compilers for Linux®
Compiler Version Optimization Switches
SuSE GCdC 4.2.0 Step 1.Compile the program with -fprofile-arcs.
an

Red Hat gcc-ssa Step 2.Run the executable produced in Step '1. Running the
(for C/C++ and Fortran) executable generates several files with profile
information (*.da).
Step 3.Recompile the program with -fbranch-probabilities.

FSF GCC 4.2.0 and Step 1.Compile the program with -fprofile-generate.
Red Hat GCC 4.2.0

Step 2.Run the executable produced in Step 1. Running the
executable generates several files with profile
information (*.da).

Step 3.Recompile the program with -fprofile-use.

-Bsymbolic. Sarting from GCC 4.1, gcc compiler no longer requires the -Bsymbolic switch. GCC
4.1 and later versions offer -combine -fwhole -program, which should be used together, but require
that makefiles be changed to use a single command to compile and link all files of an application,
slowing down builds. So it should only be used for non-debug builds. Unfortunately, these options
may fail compiling some files.

-minline-all-stringops. When using the GCC 3.4 compiler on Red Hat Enterprise Linux 4,
experiment with the switch -minline-all-stringops. This switch is not recommended for GCC 3.4 on
SuSE Linux Enterprise Server.

Linking with ACML. The AMD Core Math Library (ACML) includes BLAS, LAPACK and FFT
routines that are optimized for AMD Athlon™ 64, AMD Opteron™, and AMD Family 10h
processors. If the program uses these routines, using ACML in place of generic C/Fortran

24 Performance-Centric Compiler Switches Chapter 3

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

implementation may greatly improve the performance. For additional details on how to install this
library and use it, see http.//developer.amd.com/assets/acml_userguide.pdyf.

-fno-rtti. This switch disables generation of information about every class, with virtual functions, for
use by the C++ runtime type identification features (dynamic_cast and typeid). If the user does not
use those parts of the language, some space can be conserved by using this switch.

Generate 32-Bit Binaries with -m32. The user can also use 64-bit GCC compilers to generate
32-bit binaries by using the -m32 switch. This can improve performance if the program has lots of
variables of the type long and/or pointers. As these data-types are 32-bit in x86, this switch will
reduce the memory footprint of the program. Also, the user should use the recommended switches for
the 32-bit GCC compiler (section 3.8.4 on page 32) when -m32 is used.

Users can obtain more details on these switches by trying info gcc on their Linux systems.

3.3 Intel Compilers (64-Bit) for Linux®

Intel provides 64-bit compilers for Linux that can be used for AMD64 systems. The current version
(as of Augus 2007) is 10.0. All options described in this section apply to this version.

3.3.1 Invocation Commands

The following commands invoke specific compilers:
* icpc invokes the C++ compiler.
* icc invokes the C compiler.

e ifort invokes the Fortran compiler.

3.3.2 Generic Performance Switches

The switches -xW -ipo -O3 -static are generally recommended.

3.3.3 Other Switches

In addition to the generic performance switches, it is worth experimenting with the following
switches.

Profile Guided Optimization. Intel compilers allow profile guided optimization. Use the

following steps for profile guided optimization with Intel compilers.

1. Compile the program with the -prof_gen switch. The -ipo or -ip switch is ignored by the compiler
if used with -prof_gen.

2. Run the executable produced in Step 1. Running this executable generates several files with pro-
file information (*.dyn and *.dpi).

3. Recompile the program with the -prof_use switch. It is recommended to also use the -ipo switch
in this stage.

Chapter 3 Performance-Centric Compiler Switches 25

http://developer.amd.com/assets/acml_userguide.pdf

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

-fno-rtti. Using this switch instructs the C++ compiler to discard C++ run-time type information
(RTTI). This may improve performance. However, C++ features requiring RTTI (exceptions,
dynamic cast, etc.) will not be supported.

-ansi-alias. Try this switch if the program strictly conforms to the ISO C99 standard. If the
program adheres to the standard, this switch allows the compiler to perform aggressive optimizations.

3.4 PathScale Compilers (64-Bit) for Linux®

PathScale provides C, C++, and Fortran compilers for AMD64 architecture-based systems running
the Linux operating system. The current version (as of August 2007) is 3.0 All options described in
this section apply to this version.

3.4.1 Invocation Commands

The following commands invoke specific compilers:

* pathcc invokes the QLogic PathScale C compiler.

* pathCC invokes the QLogic PathScale C++ compiler.

* pathf95 invokes the QLogic PathScale Fortran compiler.

3.4.2 Generic Performance Switches

The -O3 and -OPT:Ofast switches are recommended as the first step of optimization. For further
tuning, experiment with the switches in the next section.

3.4.3 Other Switches
In addition to the -O3 and -OPT:Ofast switches, the following list of switches may improve the
performance of the program. It is worth experimenting with these switches.

Profile Guided Optimization. The 64-bit QLogic PathScale compiler allows profile guided
optimization. Use the following steps for profile guided optimization with 64-bit PathScale compilers
for Linux.

1. Compile the program with the -fb_create fbdata switch.
2. Run the executable produced in Step 1. It will generate several files with profile information.

3. Recompile the program with the -fb_opt fbdata switch.

Inter-Procedure Optimization. Use the switch -ipa to enable inter-procedure optimization.

-Ofast. For aggressive optimization, use the -Ofast switch. This is the shorthand for the switches
-03, -OPT:Ofast, -ipa -ffast-math, and -fno-math-errno .

Linking with ACML. The AMD Core Math Library (ACML) includes BLAS, LAPACK and FFT
routines that are optimized for AMD Athlon™ 64 and AMD Opteron™ processors. If the program

26 Performance-Centric Compiler Switches Chapter 3

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

uses these routines, using ACML in place generic C/Fortran implementation may greatly improve the
performance. Use the GNU64 libraries of ACML for the 64-bit PathScale compiler. For additional
details on how to install this library and use it, see
http://developer.amd.com/assets/acml_userguide.pdf.

Refer to the PathScale EKOPath Compiler Suite User Guide, Version 2.1, for more options and
suggestions for tuning your application performance.

3.5 Intel Compilers (64-Bit) for Microsoft® Windows®

Intel provides C, C++ and Fortran compilers for EM64T and compatible architecture-based systems
running 64-bit Microsoft® Windows® operating systems. The current version (as of August 2007) is
10.0. All options described here apply to this version.

3.5.1 Invocation Commands

The following commands invoke specific compilers:
* icl invokes the Intel C and C++ compiler.

e ifort invokes the Intel Fortran compiler.

3.5.2 Generic Performance Switches

The switches -QxW -Qipo -O3 are generally recommended.

3.5.3 Other Switches

In addition to the generic performance switches above, it is worth experimenting with the following
switches.

Profile Guided Optimization. Intel compilers allow profile guided optimization. Use the
following steps for profile guided optimization with Intel compilers.

1. Compile the program with the -Qprof_gen switch. The -Qipo or -Qip switch is ignored by the
compiler if used with -Qprof_gen.

2. Run the executable produced in Step 1. Running this executable generates several files with
profile information (*.dyn and *.dpi).

3. Recompile the program with the -Qprof _use switch. It is recommended to also use -Qipo in this
stage.

-Qansi-alias. Try this switch if the program strictly conforms to the ISO C99 standard. If the
program adheres to the standard, this switch allows the compiler to perform more aggressive
optimizations.

Chapter 3 Performance-Centric Compiler Switches 27

http://developer.amd.com/assets/acml_userguide.pdf

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

3.6 Microsoft® Compilers (64-Bit) for Microsoft®
Windows®

Microsoft provides C/C++ compilers for AMD64 architecture-based systems running the Microsoft
Windows operating system. The current version is Visual Studio 2008. This document contains the
latest C/C++ compiler recommendations for Visual Studio 2008. All the options described below
apply to this version of the compiler.

3.6.1 Invocation Commands

The ¢l command invokes the Microsoft C/C++ compiler.

3.6.2 Generic Performance Switches

The /02, /GL and /fp:fast switches almost always result in improved performance. The /O2 switch
turns on several general optimizations. The /GL enables interprocedural optimizations. Using /fp:fast
allows the compiler to use a fast floating-point model. However, for applications that requires high
precision this switch should be avoided. For code that may be sensitive to cache size, consider using
the /O1 compiler switch. /O1 will generate smaller code at the possible expense of instruction
execution speed. However, the potential performance improvement due to smaller code footprint may
be of more benefit than any loss due to slower instructions.

Profile-Guided Optimization. The 64-bit Microsoft compiler allows profile-guided optimization.
Use the following steps for profile-guided optimization with 64-bit Microsoft compilers for Microsoft
Windows.

1. Compile the program with the /GL switch and link with the /LTCG:PGI switch.

2. Run the executable produced in Step 1. Running the executable generates several files with profile
information.

3. Relink the program with the /LTCG:PGO switch.

/ID_SECURE_SCL=0. To turn off linking with secure C++ libraries, use the /D_SECURE_SCL=0
switch. This switch can improve the performance of iterator-heavy C++ code , but can sacrifice
security as buffer-overrun checks are disabled.

IOPT:ref,icf. This linker option removes redundant symbols and unused functions, resulting in a
smaller binary.

3.6.3 /favor Performance Switch

When targeting AMD Family 10h processors, use the /favor:blend switch for best performance. If no
favor flag is specified, /favor:blend is the default. When targeting AMD processors prior to AMD
family 10h, use the /favor:AMDG64 switch. It will typically result in improved performance on those
platforms.

28 Performance-Centric Compiler Switches Chapter 3

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

3.7 Sun Compilers (64-bit) for Solaris

Sun provides C, C++, and Fortran compilers for AMD64 architecture-based systems running the
Solaris operating system. The current version (as of August, 2007) is version 5.9 available in the Sun
Studio 12 developer tools suite. All the options described below apply to this version of the compiler.

3.7.1 Invocation Commands

The following commands invoke specific compilers:
e ccinvokes the Sun Studio C compiler.

* CC invokes the Sun Studio C++ compiler.

* {77 invokes the Sun Studio Fortran 77 compiler.
* 190 invokes the Sun Studio Fortran 90 compiler.

3.7.2 Generic Performance Switches

Use the following switches to enable generation of 64-bit binaries, -xarch=sse3a -m64, which
includes prefetch to help tune better for the AMD instruction set architecture; -m64, which is the
same as

-xarch=generic64 (which we otherwise recommend because it helps for SPARC as well as Xeon and
Opteron processors) produces binaries meant to run on both ISA, Xeons and AMD processors.

Different optimization switches are recommended for different platforms. The -fast switch enables a
number of optimizations that optimize the execution time on the compilation platform. If the program
is run on a different machine -fast can be combined with -xtarget to optimize for a different platform.
If performance on a wide variety of systems is desired, combine

-xtarget=generic with -fast. If a switch implied by -fast (e.g., -xarch=isa) is overridden, that switch
must follow -fast on the command line, or it will be ignored. For AMD Family 10h, we recommend
using -xtarget=barcelona to take better advantage of AMD Family 10h ISA. Note that patchO1 for
Sun Studio 12 must be installed before one can use this switch.

3.7.3 Other Switches

In addition to the generic switches, the following switches may improve the performance of the
program. It is worth experimenting with these switches.

Use the -xO[1|2|3|4|5] switch to enable various levels of general optimization algorithms. Usually
using a higher number results in faster execution, but in some cases -xO2 or -xO3 is faster than
-x04 or -xO5.

Note: The -fast switch implies the -xO35 switch.

The -xprofile=collect:[name] and -xprofile=use:[name] flags enable profile-guided optimization.
The flags must be specified both when compiling and linking. After compiling with the

Chapter 3 Performance-Centric Compiler Switches 29

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

-xprofile=collect:[name] flag, run the program on a typical dataset. Then compile with
-xprofile=use:[name] to utilize the resulting profile data to tune the program.

The -xcrossfile flag enables optimization across all source files. This flag must be combined with
-x04 or -xO5 to be effective.

The -xipo=2 flag enable interprocedural optimization (this option is preferred over -xcrossfile, which
was pre-ipo).

The -xprefetch and -xprefetch_level=1,2,3. causes prefetch with various metric triggers
-xalias_level, which communicates that a given program is known to adhere to certain aliasing
restrictions -xvector=simd,lib which causes generation of SIMD instructions for chips that support
SIMD(all, for Opteron).

Note: The -fast switch implies the -xO35 switch.

Additional performance improvements can be gained in floating point programs using the
-fsimple[=n] switch. The -fsimple=2 flag enables aggressive floating point optimizations, but
sacrifices numeric accuracy. This flag is implied by -fast.

3.8 GCC Compilers (32-Bit) for Linux®

The 32-bit GNU Compiler Collection (GCC) compilers can be installed and run on 32-bit Linux and
64-bit Linux on AMD Athlon™ 64 and AMD Opteron™ processors. The GCC compilers come in a
number of different varieties. This section discusses the following different GCC compilers:

e gcc 4.2.0 from Free Software Foundation (FSF)
e gcc 4.2.0 compiler from SuSE Linux Enterprise Server 10

* gcc 4.2.0 compiler from SuSE Linux 10.1

3.8.1 Recommended Compiler Versions

The Linux distributions from SuSE and Red Hat include a default 32-bit GCC compiler and optional
compilers. From a performance standpoint, the optional compilers are recommended. Table 5 shows
the recommended (optional) compiler versions for the current SuSE and Red Hat distributions.

Table 5. GCC Versions Included with Linux® Distributions

Linux® Distribution Default GCC Recommended (Optional) Compiler Version
Compiler Version
Red Hat Enterprise 3.2 gcc-ssa
Linux® 3
SuSE Linux Enterprise 4.1 gcc 4.2.0
Server 10

30 Performance-Centric Compiler Switches Chapter 3

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

Table 5. GCC Versions Included with Linux® Distributions

Red Hat Enterprise Linux 4 3.4.1 No optional compiler available with the
distribution. The default compiler is the
recommended compiler.

SuSE Linux 10.1 4.1.1 4.2.0
SuSE Linux Enterprise 4.1.0 4.2.0
Server 10

Table 4, “Profile Guided Optimization for 64-Bit GCC Compilers for Linux®;” on page 24 identifies
the recommended optional compilers by their package names. The distribution media include the
RPMs. The package gcc-ssa is installed in /ust/bin by default, while gcc-33 is installed in /opt/gcc33/.

In addition to the supplied compilers, the user can also experiment with the latest GCC compilers
(versions 4.2.0) from the Free Software Foundation (FSF). Users probably cannot expect, however,
the same level of support for FSF GCC compilers as they can expect for supplied compilers.

3.8.2 Invocation Commands

The following commands invoke specific compilers:

* gcc invokes the C compilers for 4.0, 3.4.1, 3.4, 3.3.4 and gcc 3.3.3.

* gcc-ssa invokes the gce-ssa C compiler.

e gfortran invokes the Fortran 95 compiler for 4.0.

e g++ invokes the C++ compilers for 4.0, 3.4.1, 3.4, 3.3.4 and gcc 3.3.3.
* g++-ssa invokes the gcc-ssa C++ compiler.

* @77 invokes the Fortran 77 compiler for 3.4.1, 3.4, 3.3.4 and gcc 3.3.3.

* g77-ssa invokes the gcc-ssa Fortran 77 compiler.

The user may have to specify the full path of the invocation command for using the optional GCC
compilers. For example, /opt/gcc33/bin/gec invokes the optional SLES8 GCC compiler.

3.8.3 Generic Performance Switches

Different optimization switches are recommended for 32-bit SUSE GCC 3.3.3, Red Hat gcc-ssa and
3.4 compiler versions. Table 6 shows the recommended optimization switches for the listed
compilers.

Table 6. Recommended Option Switches for 32-Bit GCC Compilers for Linux®

Compiler Version Recommended Optimization Switches

Chapter 3 Performance-Centric Compiler Switches 31

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

Table 6. Recommended Option Switches for 32-Bit GCC Compilers for Linux®
SuSE GCC 4.2.0 -03 -march=k8 -ffast-math -fomit-frame-pointer
(for C/C++ and Fortran) and -malign-double -mfpmath=sse

Red Hat gcc-ssa

(for C/C++ and Fortran)
FSF GCC 4.2.0-Red Hat GCC 3.4.1 -O3 -march=k8 -ffast-math -fomit-frame-pointer
-malign-double -mfpmath=sse -fpeel-loops -ftracer
-funswitch-loops -funit-at-a-time

SuSE GCC 4.2.0 -03 -march=k8 -ffast-math -fomit-frame-pointer
-malign-double -mfpmath=sse -fpeel-loops

FSF GCC 4.2.0 (for C/C++ and -03 -march=k8 -ffast-math -fomit-frame-pointer

Fortran) -malign-double -mfpmath=sse -fpeel-loops -ftracer

-funswitch-loops -ftree-vectorize

The -O3 switch turns on several general optimizations.
Using the -ffast-math switch allows the compiler to use a significantly fast floating point model.

The -fomit-frame-pointer causes the frame pointer to be omitted resulting in a performance
improvement. The user should not use this switch if they need to rewind the stack using the frame
pointer.

Using -malign-double will result in better alignment and hence faster code on the AMD Athlon™ 64
and AMD Opteron™ processors.

Using -mfpmath=sse causes the compiler to generate SSE/SSE2 instructions in favor of the default
x87 instructions.

Since the default for the 32-bit gcc compiler is -march=i386, using -march=Kk8 causes it to generate
high-performance code for the AMD Athlon™ 64 and AMD Opteron™ processors, while using
-march=amdfam10 causes it to generate high-performance code for AMD Family 10h processors.

The GCC 4.2.0 compiler can perform loop vectorization by using the -ftree-vectorize flag.

3.84 Other Switches

In addition to the switches mentioned in Table 6, “Recommended Option Switches for 32-Bit GCC
Compilers for Linux®,” on page 31 the following list of switches may also improve the performance

of the program. It is worth experimenting with these switches.

Profile Guided Optimization. The 32-bit GCC compiler allows profile guided optimization.
Table 7 shows the profile guided optimization switches for the three GCC compilers.

Table 7. Profile Guided Optimization for 32-Bit GCC Compilers for Linux®

Compiler Version | Optimization Switches

32 Performance-Centric Compiler Switches Chapter 3

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

Table 7. Profile Guided Optimization for 32-Bit GCC Compilers for Linux®

SuSE GCC 4.2.0 Step 1.Compile the program with -fprofile-arcs.
(for C/C++ and Fortran) and Step 2.Run the executable produced in Step 1. Running this
Red Hat gcc-ssa executable generates several files with profile
(for C/C++ and Fortran) and information (*.da).
SuSE GCC 4.2.0 Step 3.Recompile the program with -fbranch-probabilities.
FSF GCC 4.2.0 Step 1.Compile the program with -fprofile-generate.
(for C/C++ and Fortran) and Step 2.Run the executable produced in Step 1. Running this
Red Hat GCC 4.2.0 executable generates several files with profile

information (*.da).

Step 3.Recompile the program with -fprofile-use.

-funroll-loops. This switch causes loops, the iterations of which can be determined at compile time
or entry into the loop to be unrolled. Some loops are therefore unrolled.

This switch can be used with all three versions of the 32-bit GCC Compilers for Linux.

-Bsymbolic. GCC 4.2 no longer uses the -Bsymbolic compiler switch. Instead, GCC 4.2 now offers
the -combine -fwhole-program switch combination, which should be used together. This switch
combination requires that makefiles be changed to use a single command to compile and link all files
of an application, slowing down builds. So the -combine -fwhole-program switch combination,
should only be used for non-debug builds. Unfortunately, these options may fail when compiling
some files.

minline-all-stringops. When using the GCC 4.2.0 compiler on Red Hat Enterprise Linux 4,
experiment with the switch -minline-all-stringops. This switch is not recommended for GCC 4.2.0
on SuSE Linux Enterprise Server.

This switch can be used with all three versions of the 32-bit GCC Compilers for Linux.

Linking with ACML. The AMD Core Math Library (ACML) includes BLAS, LAPACK and FFT
routines that are optimized for AMD Athlon™ 64 and AMD Opteron™ processors. If the program
uses these routines, using ACML in place of generic C/Fortran implementation may greatly improve
the performance. For additional details on how to install this library and use it, see
http://developer.amd.com/assets/acml_userguide.pdf.

ACML can be used with all 3 versions of 32-bit GCC Compilers for Linux discussed in this
application note.

Generate 32-bit binaries with -m32. The 32-bit GCC compilers generate 32-bit binaries by
default. The user can also use 64-bit GCC compilers to generate 32-bit binaries by using the -m32
switch. Use the switches recommended in this section along with the -m32 switch.

This switch can be used with all three versions of the GCC Compilers for Linux talked about here.

Chapter 3 Performance-Centric Compiler Switches 33

http://developer.amd.com/assets/acml_userguide.pdf

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

-fno-rtti. This switch disables generation of information about every class with virtual functions for
use by the C++ runtime type identification features (dynamic_cast and typeid). If the user does not
use those parts of the language, some space can be conserved by using this switch.

Users can obtain more details on these switches by trying info gec on their Linux systems.

3.9 Intel Compilers (32-Bit) for Linux®

The 32-bit Intel compilers can be installed and run on 32-bit and 64-bit Linux on AMD Athlon™ 64,
AMD Opteron™ and AMD Family 10h processors. On 64-bit Linux, the 32-bit binaries will run in
compatibility mode. To be able to do this, one has to tell the system linker on 64-bit Linux to link with
32-bit libraries, and to generate 32-bit executable. This can be done with the following command.

PROMPTS icc -Wl,-m,elf i386 <other compiler switches> <source files>

3.9.1 Invocation Commands

The following commands invoke specific compilers:
* icpc invokes the Intel C++ compiler for version 10.0-
* icc invokes the Intel C/C++ compilers for version 10.0.

* ifort invokes the Intel Fortran versions 10.0 compiler.

3.9.2 Generic Performance Switches

These flags are recommended for Intel 10.0 compiler: -xW -ipo -O3 -static.

The -xW switch instructs the compiler to optimize for a Pentium® 4 processor (including SSE2
instructions).

The -ipo switch enables inter-procedural (across source files) analysis.

The -O3 switch optimizes for speed, including several aggressive optimizations.

3.9.3 Other Switches

In addition to the switches mentioned in the following list of switches may also improve the
performance of the program. It is worth experimenting with these switches.

Profile Guided Optimization. Intel compilers allow profile guided optimization. Use the
following steps for profile guided optimization with Intel compilers.

1. Compile the program with the -prof_gen switch. The -ipo or -ip switch is ignored by the compiler
if used with -prof_gen.

2. Run the executable produced in Step 1. Running this executable generates several files with
profile information (*.dyn and *.dpi).

34 Performance-Centric Compiler Switches Chapter 3

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

3. Recompile the program with the -prof_use switch. It is recommended to also use the -ipo switch
in this stage.

-nolib_inline. For programs with many calls to memory-related library routines (such as, memmove
and memcopy), using the -nolib_inline switch may improve performance for Intel compiler versions
7.1 and 8.0. This switch is not recommended for version 9.1.

-unroll[n]. This switch sets the maximum number of times to unroll a loop. Experiment with values
1-4. For scientific programs, a particular value may slightly improve performance.

-fno-rtti. Using this switch will instruct the C++ compiler not to keep C++ run-time type information
(RTTT). This may improve performance. However, C++ features requiring RTTT (exceptions,
dynamic cast, etc.) will not be supported.

-ansi-alias. Try this switch if the program strictly conforms to the ISO C99 standard. If the
program adheres to the standard, this switch allows the compiler to perform aggressive optimizations.

3.10 PathScale Compilers (32-Bit) for Linux®

PathScale provides C, C++, and Fortran compilers for x86 Linux. The current version (as of August
2007) is 3.0. All the options described in this section apply to this release. To generate 32-bit binaries,
the -m32 switch must be used with the PathScale compiler.

3.10.1 Invocation Commands

The following commands invoke specific compilers:
* pathcc invokes the PathScale C compiler.

* pathCC invokes the PathScale C++ compiler.

e pathf90 invokes the PathScale Fortran compiler.

3.10.2 Generic Performance Switches

Use the -O3 and -OPT:Ofast switches as the first step of optimization. For further tuning, experiment
with the switches in Section 3.10.3.

3.10.3 Other Switches

In addition to the -O3 and -OPT:Ofast switches, the following list of switches may improve the
performance of the program. It is worth experimenting with these switches.

Profile Guided Optimization. The 32-bit PathScale compiler also allows profile guided
optimization. Use the following steps for profile guided optimization with PathScale compilers.

1. Compile the program with the -fb_create fbdata switch.

2. Run the executable produced in Step 1. Running this executable generates several files with
profile information.

Chapter 3 Performance-Centric Compiler Switches 35

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

3. Recompile the program with the -fb_opt fbdata switch.
Inter-Procedure Optimization. Use the -ipa switch to enable inter-procedure optimization.

-Ofast. For aggressive optimization, use the -Ofast switch. This is the shorthand for the switches
-03, -OPT:Ofast, -ipa, and -fno-math-errno.

Linking with ACML.

The AMD Core Math Library (ACML) includes BLAS, LAPACK and FFT routines that are
optimized for AMD Athlon™ 64, AMD Opteron™ and AMD Family 10h processors. If the program
uses these routines, using ACML in place of generic C/Fortran implementation may greatly improve
the performance. For additional details on how to install this library and use it, see
http://developer.amd.com/assets/acml_userguide.pdf.

Refer to the PathScale EKOPath Compiler Suite User Guide, Version 2.1, for more options and
suggestions for tuning your application performance.

3.11 Intel Compilers (32-Bit) for Microsoft® Windows®

The 32-bit Intel compilers can be installed and run on 32-bit Microsoft Windows on
AMD Athlon™ 64, AMD Opteron™ and AMD Family 10h processors.

3.11.1 Invocation Commands

The following commands invoke specific compilers:
* icl invokes the 32-bit Intel C/C++ compilers.

» ifort invokes the 32-bit Intel Fortran versions 9.1 and 10.0compilers.

3.11.2 Generic Performance Switches

Use of the -QxW -Qipo -O3 switches are recommended for Intel compiler version 10.0.

The -QxW switch instructs the compiler to optimize for Pentium 4 processor (including SSE2
instructions).

The -Qipo switch enables interprocedural (across multiple source files) analysis.

The -O3 optimizes for speed and includes several aggressive optimizations.

3.11.3 Other Switches

In addition to the switches mentioned in the program. It is worth experimenting with these switches.
Profile Guided Optimization. Intel compilers allow profile guided optimization. Use the following
steps for profile guided optimization with Intel compilers.

1. Compile the program with the -Qprof_gen switch. The -Qipo or -Qip switch is ignored by the
compiler if used with -Qprof_gen.

36 Performance-Centric Compiler Switches Chapter 3

http://developer.amd.com/assets/acml_userguide.pdf

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

2. Run the executable produced in Step 1. Running the executable generates several files with profile
information (*.dyn and *.dpi).

3. Recompile the program with the -Qprof_use switch. It is recommended to also use the
-Qipo switch in this stage.

-Oi-. For programs with many calls to memory-related library routines (such as, memset and
memcpy), using the -Oi- switch may improve performance for Intel compiler versions 7.1 and 8.0.
This switch is not recommended for version 9.1.

-Qunroll[n]. This switch sets the maximum number of times to unroll a loop. Experiment with
values 1-4. For scientific programs, a particular value may slightly improve performance.

-Qansi-alias. Try this switch if the program strictly conforms to the ISO C99 standard. If the
program adheres to the standard, this switch allows the compiler to perform aggressive optimizations.

3.12 Microsoft® Compilers (32-Bit) for Microsoft®
Windows®

The 32-bit Microsoft compilers can be installed and run on 32-bit Microsoft Windows and 64-bit
Microsoft Windows on AMD Athlon™ 64, AMD Opteron™, and AMD Family 10h processors. The
current version is Visual Studio 2008. All the options below apply to this version.

3.12.1 Invocation Command

The ¢l command invokes the Microsoft C/C++ compiler.

3.12.2 Generic Performance Switches

The /02, /GL, /Oy, and /fp:fast switches almost always result in improved performance. The /02
switch turns on several general optimizations. The /GL switch enables whole-program IPA and /Oy
allows the compiler to use frame pointer register as a general register which usually result in better
performance. Using /fp:fast allows the compiler to use fast math library routines with extensive error
checking turned off. Using /fp:fast also allows the compiler to adhere to a fast but less predictable
floating point model in general. However, applications that require high precision should avoid using
this switch. For code that may be sensitive to cache size, consider using the /O1 compiler switch. /O1
will generate smaller code at the possible expense of instruction execution speed. However, the
potential performance improvement due to smaller code footprint may be of more benefit than any
loss due to slower instructions.

3.12.3 Other Switches

In addition to the /02, /GL, /Oy, and /fp:fast switches, the following list of switches may improve the
performance of the program. It is worth experimenting with these switches.

Chapter 3 Performance-Centric Compiler Switches 37

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

Profile Guided Optimization. The 32-bit Microsoft compiler allows profile guided optimization.
Use the following steps for profile guided optimization with 32-bit Microsoft compilers for Microsoft
Windows.

1. Compile the program with the /GL switch and link with the /LTCG:PGI switch.

2. Run the executable produced in Step 1. Running this executable generates several files with
profile information.

3. Relink the program with the /[LTCG:PGO switch.

The -arch:SSE2 switch allows the compiler to use the SSE?2 instructions, when it determines that it is
faster than x87 for scalar, floating-point computations and will interleave the two as appropriate. As a
result, the code uses a mixture of both x87 and SSE2. Using this switch almost always results in
increased speed.

The compiler emits code that is thread-safe by default. Turning off this default by using
/D_ST _MODEL can result in an additional performance improvement.

|OPT:ref,icf. This linker option removes redundant symbols and unused functions, resulting in a
smaller binary.

3.13 Sun Studio Compilers (32-bit) for Solaris

Sun Microsystems provides C, C++, and Fortran compilers for the x86 Solaris operating system. The
current version of each compiler (as of August 2007) is 5.9, and is available in the Sun Studio 12
developer tools suite. All options below apply to this version of the compilers.

3.13.1 Invocation Commands

The following commands invoke specific compilers:
* cc invokes the Sun Studio C compiler.

* CC invokes the Sun Studio C++ compiler.

e {77 invokes the Sun Studio Fortran 77 compiler.
* 190 invokes the Sun Studio Fortran 90 compiler.

3.13.2 Generic Performance Switches

Different optimization switches are recommended for different platforms. The -fast switch enables a
number of optimizations that optimize the execution time on the compilation platform. If the program
will be run on a different machine, -fast can be combined with -xtarget to optimize for a different
platform. If performance on a wide variety of systems is desired, combine

-xtarget=generic with -fast. If a switch implied by -fast (e.g., -xarch=isa) is overridden, that switch
must follow -fast on the command line, or it will be ignored.

38 Performance-Centric Compiler Switches Chapter 3

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

3.13.3 Other Switches

In addition to the generic switches, the following switches may improve the performance of the
program. It is worth experimenting with these switches.

Use the -xO[1|2|3|4|5] switch to enable various levels of general optimization algorithms. Usually
using a higher number results in faster execution, but in some cases -xO2 or -xO3 may be faster than
-x04 or -xO5.

Note: The -fast switch implies the -05 switch.

The -xprofile=collect:[name] and -xprofile=use:[name] flags enable profile guided optimization.
The flags must be specified both when compiling and linking. After compiling with the
-xprofile=collect:[name] flag, run the program on a typical dataset. Then compile with
-xprofile=use:[name] to utilize the resulting profile data to tune the program.

The -xcrossfile flag enables optimization across all source files. This flag must be combined with
-x04 or -xO5 to be effective.

Note: The -fast switch implies the -xOS5 switch.

Additional performance improvements can be gained in floating point programs using the
-fsimple[=n] switch. The -fsimple=2 switch enables aggressive floating point optimizations, but
sacrifices numeric accuracy. This flag is implied by -fast.

Chapter 3 Performance-Centric Compiler Switches 39

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

40 Performance-Centric Compiler Switches Chapter 3

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

Chapter 4 Troubleshooting and Portability
Issues

Tuning code for optimal performance presents a wide variety of challenges from compilation errors to
unexpected results. This chapter presents the developer with a series of diagnostic steps for a given
compiler to troubleshoot errors encountered when compiling or running code.

Troubleshooting issues fall into the following broad categories:
e Compilation errors

» Interoperability between languages

e Link-time errors

* Run-time errors

* Compiled and linked code generates unexpected results

e Other issues

4.1 PGl Compilers for Linux® and Microsoft®
Windows®

This section addresses errors and unexpected results that may be encountered when using 32-bit
and/or 64-bit PGI compilers for Linux and Microsoft® Windows®.

411 Interoperability Between Languages

Is your program composed of both C/C++ and Fortran modules?

This section discusses several issues that can arise when linking together Fortran and C/C++ modules.

Definition of main () in a C/C++ Module

When linking together C and Fortran object files using the pgf90 invocation command, if the
main () function is included in one of the C objects, use the -Mnomain switch. Using the
-Mnomain switch instructs the PGI compiler not to include the Fortran main program module
during linking.

Ensuring Cases and Underscores Match

By default Linux and Microsoft Windows convert all Fortran symbol names to lower-case. C and C++
are case sensitive, so upper-case function names stay upper-case. When using inter-language calling,
either name the C/C++ functions with lower-case names, or invoke the Fortran compiler command

Chapter 4 Troubleshooting and Portability Issues 41

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

with the -Mupcase switch. This switch prevents the compiler from converting symbol names to
lower-case.

To match the underscore appended by the compiler to global symbol names in Fortran, use the
following function naming convention.

1. When calling a C/C++ function from Fortran, rename the C/C++ function by appending an
underscore.

2. When calling a Fortran function from C/C++, append an underscore to the Fortran function name
in the calling program.

Functions or Subroutines?

Fortran, C, and C++ define functions and subroutines differently. For a Fortran program calling a C or
C++ function, observe the following return value convention.

1. When the C or C++ function returns a value, call the value from Fortran as a function; when the C
or C++ function returns something other than a value, call the value as a subroutine.

2. When calling a Fortran function from C/C++, the call should return a similar type. For a list of
compatible types between the C/C+ and Fortran modules, refer to the PGI Compiler User s
Guide.

The32-bit PGI compiler for Windows supports several different calling conventions. The nature of the
issues regarding interoperability of languages depends on the calling convention used. For additional
details please refer to the PGI Compiler User s Guide.

Passing by Reference vs. Passing by Value

Fortran passes arguments by reference (i.e., the address of the argument is passed, rather than the
argument itself). C/C++ passes arguments by value, except for strings and arrays, which are passed by
reference. C/C++ provides the flexibility to work around these differences. Solving the parameter
passing differences generally involves intelligent use of the & and * operators in argument passing
when C/C++ calls Fortran and in argument declarations when Fortran calls C/C++.

For strings declared in Fortran as type CHARACTER, Fortran passes an argument representing the
length of the string to a calling function. On Linux systems, the compiler places the length
argument(s) at the end of the parameter list, following the other formal arguments and passes the
length argument by value, not by reference.

Passing Arrays

C/C++ arrays and Fortran arrays use different default initial array index values. By default, C/C++
arrays start at 0 and Fortran arrays start at 1. Adjust your array comparisons so that the second
element in a Fortran array is compared to the first element in a C/C++ array. Make similar
adjustments for other elements. If adjusting initial array index values is not satisfactory, declare your
Fortran arrays to start at zero.

42 Troubleshooting and Portability Issues Chapter 4

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

Fortran and C/C++ arrays also use different storage methods. Fortran uses column-major order, and
C/C++ uses row-major order. This poses no problems for one-dimensional arrays. For two-
dimensional arrays, where there are an equal number of rows and columns, simply reverse the row
and column indices. For arrays other than single dimensional arrays, and square two-dimensional
arrays, inter-language function mixing is not recommended.

Linking Fortran Modules with C/C++ Main Programs

You must explicitly link in the PGI Fortran runtime support libraries when linking pgf90-compiled
program units into C or C++ main programs (C/C++ calling Fortan) using the switches -1pgf90, -
Ipgf90_rpml, -lpgf902, -Ipgf90rtl, and -lpgftnrtl. When linking pgf77-compiled program units into
C or C++ main programs, you need to use only the -lpgftnrtl switch.

4.1.2 Run-Time Errors
Does your program expect 64-bit integers?

By default, the Fortran INTEGER data-type is a 32-bit entity in AMDG64. If a program expects
INTEGER to be a 64-bit entity (e.g., programs ported from some 64-bit architecture, such as Alpha),
use the -i8 switch. The -i8 switch makes all integers 64-bit entities. This switch is only available for
the PGI Fortran compiler (pgf90).

Are you receiving a run-time error?

Check for array overruns. Run-time errors can be caused by accessing arrays out-of-bounds. Use the
switch -Mbounds to generate code for checking array bounds.

4.1.3 Compiled and Linked Code Generates Unexpected Results
Are you generating vectorized code?

For some loops, vectorization can cause a slight difference in results due to the reordering of floating-
point operations. Using the switch combination -tp=k8-64 and -fastsse may cause vectorization. Try
using the non-vectorizing switch combination -tp=k8-64, -Mscalarsse, and -fast as a diagnostic step
instead. As an alternative to the vectorizing switches, use the non-vectorizing switches if their use
causes your code to give the correct, expected behavior.

Does your program require floating-point divisions conforming to the IEEE 754 standard?

Use the -Kieee=strict switch to generate floating-point divisions that are strictly compliant with the
IEEE 754 standard.

Does your program rely on x87 features?

The -fastsse switch instructs the compiler to use SSE2 registers and instructions. If the results of a
program do not match your expectations when using SSE2 registers and instructions, the program
may rely on some x87 features.

Chapter 4 Troubleshooting and Portability Issues 43

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

As a diagnostic step, try building the program using x87 operations for floating-point computations
and see if the results are as expected. Use the -tp=k8-32 and -fast switches instead of the switches
recommended in the general performance guidelines.

Because not using those switches recommended in the general performance guidelines could lower
performance, the user should investigate the precision requirements of the program. If the user has
access to the source code, it may be possible to adapt the algorithm to SSE2.

41.4 Program Gives Unexpected Results or Terminates
Unexpectedly

Are your binary input data files big-endian?

If your Fortran program is performing unformatted I/O, and the data files are big-endian, use the
-Mbyteswapio switch for swapping endian formats.

4.2 GCC Compilers (64-Bit) for Linux®

This section addresses errors and unexpected results that may be encountered when using 64-bit GCC
compilers for Linux.

4.2.1 Compilation Errors
Do you need ANSI-compliant code?

If a developer requires ANSI-compliant code in a program, GCC provides the -ansi switch to test the
ANSI-compliance of the code in a program. To see gratuitous errors and warnings for the non-ANSI

parts of the program, the user should use the -pedantic switch. The user can then modify the program
to be ANSI-compliant. The user can also use the -std switch to specify the required version of ISO C.

Does your code suffer from 64-bit portability issues, such as type casting pointers to int?

GCC provides the -Wall switch to show all warnings. This switch enables the user to detect 64-bit
portability issues, such as type-casting pointers to int.

On 64-bit Linux, int is 32 bits, and pointers and long are 64 bits (LP64). Do not use int for type-
casting pointers. Use ISO C99 portable, scalable data-types such as intptr_t for this purpose.
Additional information on this can be obtained in the ISO C99 Standard document.

Users should note that -Wall is not sufficient to get all warnings from gcc. The following switches are
avalaible that turn GCC into an effective 'lint": -Werror, -Wall, -W, -Wstrict-prototypes,
-Wmissing-prototypes, -Wpointer-arith, -Wreturn-type, -Wcast-qual, -Wwrite-strings,
-Wswitch, -Wshadow, -Wecast-align, -Wuninitialized, -Wbad-function-cast, -Wchar-subscripts,
-Winline, -Wnested-externs, -Wredundant-decl, -ansi, -pedantic. For further detail on these
switches refer to the gcc manual.

44 Troubleshooting and Portability Issues Chapter 4

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

4.2.2 Link-Time Errors

Are you trying to link C and Fortran code?

Turn on the -fno-f2¢ switch for compiling Fortran 77 modules with g77. Turning on the -fno-f2¢
switch prevents g77 from generating code designed to be compatible with code generated by f2¢ and
uses the GNU calling conventions instead.

4.2.3 Run-Time Errors
Is your code causing buffer overruns?

Turn on the -fbounds-check switch. When the -fbounds-check switch is turned on, the GCC
compiler generates additional code to check whether the indices used to access arrays are or are not
within the declared range. The -fbounds-check switch is currently supported only by the Fortran 77
front-end, in which this option defaults to false.

Are you building a shared library?

Turn on the -fPIC switch if you need position-independent code suitable for use in a shared library.

4.2.4 Compiled and Linked Code Generates Unexpected Results
Does your program depend on precise floating point behavior?

Do not use the -ffast-math switch. When the -ffast-math is used, the compiler relaxes the rules when
optimizing floating-point operations. This mode allows the compiler to further optimize floating-
point code for speed, sometimes at the expense of floating-point accuracy. Do not use the -ffast-math
switch if precise floating-point behavior is required.

Does your program rely on x87 features?

The 64-bit GCC compiler emits SSE/SSE2 code with -mfpmath=sse, which can yield better
performance. SSE2 offers 64-bit precision, which is sufficient for almost all programs. If the results
do not match your expectations when using SSE2, the program may rely on some x87 features.

As a diagnostic step, try building the program using x87 operations for floating-point computations
and see if the results are as expected. Do this by omitting the -mfpmath=sse switch recommended in
the general performance guidelines. By default the compiler uses -mfpmath=387.

Because omitting the -mfpmath=sse switch could lower performance, the user should investigate the
precision requirements of the program. If the user has access to the source code, it may be possible to
adapt the algorithm to SSE2.

4.2.5 Program Gives Unexpected Results or Exception Behavior

Does your code depend on exact implementation of IEEE rules or specifications for floating-point
behavior?

Chapter 4 Troubleshooting and Portability Issues 45

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

GCC provides switches, such as the -mieee-fp switch, to control whether or not the compiler uses
IEEE floating-point comparisons.

The user should not use the -ffast-math optimization recommended in the general optimization
guidelines in this case. Using the -ffast-math switch results in a fast but less predictable floating-
point model. The user should also be careful to not use a switch that implies -ffast-math.

Does your code need C++ exception handling?

GCC generates the extra code needed to propagate exceptions with the -fexceptions switch. For some
targets, propagating exceptions implies that GCC generates frame unwind information for all
functions. Generating frame unwind information for all functions can produce significant data-size
overhead, although it does not affect the execution of a program.

By default, GCC enables the - fexceptions option for languages like C++ that normally require
exception handling. GCC disables the -fexceptions option for languages like C that do not normally
require it. You may need, however, to enable this option when compiling C code that must
interoperate properly with exception handlers written in C++. You may also wish to disable this
option if you are compiling older C++ programs that do not use exception handling.

Do you need to unwind the stack using the frame pointer?

The frame pointer is omitted by default on 64-bit GCC compilers to improve performance. This
default omission can be reversed by using -fno-omit-frame-pointer.

4.3 Intel Compilers (64-Bit) for Linux®

See section 4.9, “Intel Compilers (32-Bit) for Linux®”, on page 50 for the portability and
troubleshooting issues with this compiler.

4.4 PathScale Compilers (64-Bit) for Linux®

For information on diagnosing problems with the PathScale compiler, refer to the tuning document
distributed with the PathScale compiler suite.

4.5 Intel Compilers (64-Bit) for Microsoft® Windows®

See section 4.11, “Intel Compilers (32-Bit) for Microsoft® Windows®”, on page 51 for
troubleshooting errors with this compiler.

46 Troubleshooting and Portability Issues Chapter 4

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

4.6 Microsoft® Compilers for (64-Bit) Microsoft®
Windows®

This section addresses errors and unexpected results that may be encountered when using 64-bit
Microsoft® compilers for Microsoft Windows®.

4.6.1 Compilation Errors

Does your code suffer from 64-bit portability issues such as type-casting pointers to int or long?

Use the /Wp64 switch to detect 64-bit porting problems. This switch can be used with both 32-bit and
64-bit Microsoft compilers. (This switch is on by default for the 64-bit compiler.)

On AMD64 architecture-based systems running the Microsoft Windows operating system, both int
and long are 32 bits (P64), and pointers are 64 bits. Do not use int or long for type-casting pointers.
Use portable, scalable data types like INT_PTR, UINT_PTR, LONG_PTR, and ULONG_PTR for
type-casting pointers.

Note: Data types INT PTR, UINT PTR, LONG PTR, and ULONG PTR are Microsoft specific
data types.

Issues such as these can be detected by using the /Wp64 switch.

4.6.2 Run-Time Errors

Is your code causing buffer overruns and thus violating security?

Turn on the /GS switch. Turning on the /GS switch causes the Microsoft compiler to generate
additional security code, such as bounds checking.

4.6.3 Compiled and Linked Code Generates Unexpected Results
Does your program depend on precise floating-point behavior?

Do not use the /fp:fast switch recommended in the general performance guidelines. When the fp:fast
mode is enabled, the compiler relaxes the rules that fp:precise uses when optimizing floating-point
operations. This mode allows the compiler to further optimize floating-point code for speed at the
expense of floating-point accuracy.

4.6.4 Program Gives Unexpected Results or Exception Behavior

Does your code depend on the exact implementation of IEEE or ISO rules or specifications for
floating-point behavior?

Do not use the /fp:fast switch recommended in the general performance guidelines. The compiler
uses /fp:precise by default if no /fp switch is specified.

Does your code need C++ exception handling?

Chapter 4 Troubleshooting and Portability Issues 47

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

Enable exception handling with the appropriate /EH switch.

4.7 Sun Compilers (64-bit) for Solaris

See section 4.13, “Sun Compilers (32-bit) for Solaris”, on page 54 for the portability and
troubleshooting issues with this compiler.

4.8 GCC Compilers (32-Bit) for Linux®

This section addresses errors and unexpected results that may be encountered when using 32-bit GNU
Compiler Collection (GCC) compilers for Linux®.

4.8.1 Compilation Errors
Do you need ANSI-compliant code?

If a developer requires ANSI-compliant code in a program, the GCC compiler provides the -ansi
switch to test the ANSI-compliance of the code in a program. To see gratuitous errors and warnings
for the non-ANSI parts of the program, the user should use the -pedantic switch. The user can then
modify the program to be ANSI-compliant. The user can also use the -std switch to specify the
required version of ISO C.

GCC also provides the -Wall switch to show almost all warnings. This switch enables all the
warnings about constructions that some users consider questionable.

Users should note that -Wall is not sufficient to get all warnings from gcc. Warning switches that turn
GCC into an effective 'lint' are: -Werror, -Wall, -W, -Wstrict-prototypes, -Wmissing-prototypes, -
Whpointer-arith, -Wreturn-type, -Wcast-qual, -Wwrite-strings, -Wswitch, -Wshadow,
-Weast-align, -Wuninitialized, -Wbad-function-cast, -Wchar-subscripts, -Winline,
-Whnested-externs, -Wredundant-decl, -ansi, -pedantic. For further details on these switches, refer
to the GCC manual.

4.8.2 Link-Time Errors

Are you trying to link C and Fortran code?

Compile the Fortran 77 code with the -fno-f2¢ switch. The -fno-f2¢ switch prevents the g77
command from generating code designed to be compatible with code generated by the f2¢ command
and uses the GNU calling conventions instead.

4.8.3 Run-Time Errors

Is your code causing buffer overruns?

Turn on the -fbounds-check switch. When the -fbounds-check switch is turned on, the GCC
compiler generates additional code that checks whether the indices used to access arrays are or are not

48 Troubleshooting and Portability Issues Chapter 4

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

within the declared range. The -fbounds-check switch is currently supported only by the Fortran 77
front-end, in which this option defaults to false.

Are you building a shared library?

Turn on the -fPIC switch if you need position-independent code suitable for use in a shared library.

4.8.4 Compiled and Linked Code Generates Unexpected Results
Does your program depend on precise floating-point behavior?

Experiment without the -ffast-math switch. When the -ffast-math is used, the compiler relaxes the
rules when optimizing floating-point operations. This mode allows the compiler to further optimize
floating-point code for speed, sometimes at the expense of floating-point accuracy. Do not use the
-ffast-math switch if precise floating-point behavior is required.

Does your program rely on x87 features?

The 32-bit GCC compiler emits SSE/SSE2 code with -mfpmath=sse, which can yield better
performance. SSE2 offers 64-bit precision, which is sufficient for most programs. If the results do not
match your expectations when using SSE2, the program may rely on some x87 features.

As a diagnostic step, try building the program using x87 operations for floating-point computations,
and see if the results are as expected. By omitting the -mfpmath=sse switch recommended in the
general performance guidelines, the compiler uses -mfpmath=387 by default.

Because omitting the -mfpmath=sse switch could lower performance, the user should investigate the
precision requirements of the program. If the user has access to the source code, it may be possible to
adapt the algorithm to SSE2.

4.8.5 Program Gives Unexpected Results or Exception Behavior

Does your code depend on exact implementation of IEEE rules or specifications for floating-point
behavior?

GCC provides switches, such as the -mieee-fp switch, to control whether or not the compiler uses
IEEE floating point comparisons.

The user should not use the -ffast-math optimization recommended in the general optimization
guidelines in this case. Using the -ffast-math switch results in a fast, but less predictable, floating-
point model. The user should also be careful to not use a switch that implies -ffast-math.

Does your code need C++ exception handling?

GCC generates the extra code needed to propagate exceptions with the -fexceptions switch. For some
targets, propagating exceptions implies that GCC generates frame unwind information for all
functions. Generating frame unwind information for all functions can produce significant data-size
overhead, although it does not affect the execution of a program.

Chapter 4 Troubleshooting and Portability Issues 49

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

By default, GCC enables the -fexceptions option for languages like C++ that normally require
exception handling. GCC disables the -fexceptions option for languages like C that do not normally
require it. You may need, however, to enable this option when compiling C code that must
interoperate properly with exception handlers written in C++. You may also wish to disable this
option if you are compiling older C++ programs that do not use exception handling.

4.9 Intel Compilers (32-Bit) for Linux®

This section addresses errors and unexpected results that may be encountered when using 32-bit Intel
compilers for Linux®.

4.9.1 Compilation Errors
Are you using the right ANSI-compliant switch?

Use the -ansi-alias- switch to compile Fortran programs that do not adhere to the ANSI Fortran-type
alias rules.

4.9.2 Link-Time Errors

Are you trying to link C and Fortran code?

If you are linking C and Fortran modules, and the link-time error is due to a mismatch of symbol
names, use the -us switch with the Intel Fortran compiler. Using the -us switch appends an underscore
to the symbol names derived from external variables or functions, causing them to match the C
symbols.

4.9.3 Compiled and Linked Code Generates Unexpected Results
Are you generating vectorized floating-point code?

For some loops, vectorization can cause a slight difference in results due to the reordering of floating-
point operations. The switches -xK and -xW vectorize loops where possible. As a diagnostic step, try
compiling without these switches.

Does your program rely on some x87 features?

Some Intel compiler switches instruct the compiler to use SSE2 registers and instructions. If the
results of a program do not match your expectations when using SSE2 registers and instructions, the
program may rely on some x87 features.

As a diagnostic step, try building the program using x87 operations for floating-point computations,
and see if the results are as expected. Not using the -xK and -xW switches recommended in the
general performance guidelines causes the compiler to build the program using x87 operations for
floating-point computations.

50 Troubleshooting and Portability Issues Chapter 4

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

Because not using the -xK and -xW switches could lower performance, the user should investigate
the precision requirements of the program. If the user has access to the source code, it may be
possible to adapt the algorithm to SSE2.

4.9.4 Program Terminates Unexpectedly

Are you using an architecture switch that is unsafe for AMD Athlon™ 64and AMD Opteron™
processors?

Some architecture switches can cause programs compiled with Intel compiler versions 7.1, 8.0, and
8.1 to terminate unexpectedly when run on AMD Athlon™ 64 and AMD Opteron™ processors.
Table 8 shows 32-bit Intel compiler architecture switches that are not safe for AMD Athlon™ 64 and
AMD Opteron™ processors. Try building the program without these switches.

Table 8. Unsafe Architecture Switches in 32-Bit Intel Compilers for Linux®
Compiler Version Unsafe Architecture Switches
Intel 7.1 -xK and -xW
Intel 8.0 -XK -xW -xP -xB and -xN
Intel 8.1 xN and -xP

4.10 PathScale Compilers (32-Bit) for Linux®

For information on diagnosing problems with the PathScale compiler, please refer to the tuning
document distributed with the PathScale compiler suite.

4.11 Intel Compilers (32-Bit) for Microsoft® Windows®

This section addresses errors and unexpected results that may be encountered when using 32-bit Intel
compilers for Microsoft Windows.

4.11.1 Compilation Errors

Are you using the right ANSI-compliant switch?

Use the -Qansi-alias- switch to compile Fortran programs that do not adhere to ANSI Fortran-type
alias rules.

4.11.2 Compiled and Linked Code Generates Unexpected Results
Are you generating vectorized code?

For some loops, vectorization can cause a slight difference in results due to the reordering of floating-
point operations. The switches -QxK, -QxW, -arch:SSE, and -arch:SSE2 cause vectorization of
loops where possible. As a diagnostic step, try compiling without these switches.

Chapter 4 Troubleshooting and Portability Issues 51

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

Does your program rely on x87 features?

Some Intel compiler switches instruct the compiler to use SSE2 registers and instructions. If the
results do not match your expectations when using SSE2, the program may rely on some x87 features.
As a diagnostic step, try building the program using x87 operations for floating-point computations
and see if the results are as expected. Omitting the -QxK, -QxW, and -arch:SSE2 switches
recommended in the general performance guidelines causes the compiler to build the program using
x87 operations for floating-point computations.

Because omitting the -QxK, -QxW, and -arch:SSE2 switches could lower performance, the user
could investigate the precision requirements of the program. If the user has access to the source code,
it may be possible to adapt the algorithm to SSE2.

4.11.3 Program Terminates Unexpectedly

Are you using an architecture switch that is unsafe for AMD Opteron™ processors?

Some architecture switches can cause programs compiled with the Intel compiler versions 7.1 and 8.0
to terminate unexpectedly when run on AMD Opteron™ processors. Table 9 shows 32-bit Intel
compiler architecture switches that are not safe for the AMD Opteron™ processor. If a program built
with any of the switches shown in Table 9 produces errors, try building the program without those
switches.

Table 9. Unsafe Architecture Switches in 32-Bit Intel Compilers for Microsoft®

Windows®
Compiler Version Unsafe Architecture Switches
Intel 7.1 -QxK and -QxW
Intel 8.0 -QxK -QxW -QxP -QxB and -QxN
Intel 8.1 -QxN and -QxP
4114 Program Gives Unexpected Results or Exception Behavior

Does your program need C++ exception handling?

By default, the Intel C++ compiler for Microsoft Windows does not turn on C++ exception handling.
To enable C++ exceptions, use the -GX and -GR switches with the C++ compiler.

4.12 Microsoft® Compilers (32-Bit) for Microsoft®
Windows®

This section addresses errors and unexpected results that may be encountered when using 32-bit
Microsoft compilers for Microsoft Windows.

52 Troubleshooting and Portability Issues Chapter 4

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

4.12.1 Run-Time Errors
Is your code causing buffer overruns that violate security?

Turn on the /GS switch. Turning on the /GS switch causes the Microsoft compiler to generate
additional security code, such as bounds checking.

4.12.2 Compiled and Linked Code Generates Unexpected Results
Does your program depend on precise floating-point behavior?

Do not use the /fp:fast switch recommended in the general performance guidelines. When the fp:fast
mode is enabled, the compiler relaxes the rules that fp:precise uses when optimizing floating-point
operations. This mode allows the compiler to further optimize floating-point code for speed at the
expense of floating-point accuracy.

Does your program rely on some x87 features?

The /arch:SSE2 switch instructs the compiler to use SSE2 registers and instructions. If the results do
not match your expectations when using SSE2, the program may rely on some x87 features.

As a diagnostic step, try building the program using x87 operations for floating point computations
and see if the results are as expected. Omitting the /arch:SSE2 switch recommended in the general
performance guidelines causes the compiler to build the program using x87 operations for floating-
point computations.

Because omitting the /arch:SSE2 switch could degrade performance, the user should investigate the
precision requirements of the program. If the user has access to the source code, it may be possible to
adapt the algorithm to SSE2.

4.12.3 Program Gives Unexpected Results or Exception Behavior

Does your code depend on exact implementation of IEEE or ISO rules or specifications for floating-
point behavior?

Do not use /fp:fast optimization, as recommended in the general performance guidelines, in this case.
The compiler uses /fp:precise by default if no /fp switch is specified.

Does your code need structured and/or C++ exception handling?
Enable C++ exception handling with the appropriate /EH switch.

Are you to developing 32-bit code that you may eventually port to 64-bit code, and you would like the
code to remain compatible?

Use /Wp64 to detect 64-bit porting problems. This switch can be used with both 32-bit and 64-bit
Microsoft compilers.

On AMD64 architecture-based systems running the Microsoft Windows operating system, both int
and long are 32-bit, and pointers are 64-bit (P64). Do not use int or long for type-casting pointers.

Chapter 4 Troubleshooting and Portability Issues 53

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

Use portable, scalable data types like INT_PTR, UINT_PTR, LONG_PTR, and ULONG_PTR for
type-casting pointers.

Issues such as these can be detected by using the /Wp64 switch.

4.13 Sun Compilers (32-bit) for Solaris

This section addresses errors and unexpected results that may be encountered when using 32-bit Sun
compilers for Solaris.

4.13.1 Compilation Errors

Do you need ANSI-compliant code?

If a developer needs ANSI-compliant code, Sun Studio provides several switches to detect and print
errors and warnings about non-conforming constructs. The -X¢ switch specifies ISO C compliance
without K&R extensions. A number of additional switches are available to check compliance with
various combinations of standards and extensions.

4.13.2 Compiled and Linked Code Generates Unexpected Results

Does your program depend on precise floating-point behavior? Does your program depend on the
exact implementation of the IEEE 754 floating-point standard?

The -fsimple[=n] switch (implied by the -fast switch) may cause the compiler to generate code that
does not comply with the IEEE 754 floating-point standard. To guarantee compliance with the IEEE
754 floating-point standard, this switch must be set to value 0.

Do you need access to a frame pointer register?

The compilers by default do not use the stack frame pointer register to improve performance. If this
register is needed for debugging or performance analysis tools, or for C++ exceptions, it can be
enabled with the -xregs=no%frameptr switch.

54 Troubleshooting and Portability Issues Chapter 4

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

Chapter 5 Peak Options for SPEC®-CPU
Benchmark Programs

This chapter enumerates the best-known peak switches (as of September 2007) for SPEC®-CPU2006
benchmarks compiled for AMD Athlon™ 64, AMD Opteron™ and AMD Family 10h processor-
based platforms by different compilers.

5.1 PGl Release 7.1 32- and 64-Bit Compilers for
Linux®

To translate and link SPECcpu2006 benchmarks with PGI Fortran, C, or C++ compilers the following

commands are used:

* pgcc -w invokes the PGI C compiler

e pgcepp -w invokes the PGI C++ compiler

* pgf95 -w invokes the PGI Fortran 90/95 compiler

5.1.1 Base Command-line Options

The best-known base switches for various benchmarks in SPEC-cpu2006 suite for 64-bit PGI Release
7.1 compilers for Linux on AMD Athlon™ 64 processor based platforms,
AMD Opteron™ processor-based platforms and AMD Family 10h processor-based platforms.

The following command-line options are used for base integer component of SPECcpu2006
(CINT2006).

e 400.perlbench

pgee -w -fast -Mipa=fast, inline, noarg -Mfprelaxed -Msmartalloc=huge:840
-tp barcelona-64 -DSPEC_CPU_LP64 -DSPEC_CPU_LINUX_X64

* 403.gcc and 429.mcf

pgee -w -fast -Mipa=fast, inline, noarg -Mfprelaxed -Msmartalloc=huge:840
-tp barcelona-64

e 462.libquantum

pgee -w -fast -Mipa=fast, inline, noarg -Mfprelaxed -Msmartalloc=huge:840
-tp barcelona-64 -DSPEC_CPU_LP64 -DSPEC_CPU_LINUX

e 483.xalancbmk

pgepp -w -fastsse -Mipa=fast,inline -Mfprelaxed -Msmartalloc=huge:448 --zc_ch
-tp barcelona -DSPEC_CPU_LINUX

Chapter 5 Peak Options for SPEC®-CPU Benchmark Programs 55

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

* All remaining integer components of CINT2006

pgee -w -fast -Mipa=fast, inline, noarg -Mfprelaxed -Msmartalloc=huge:840
-tp barcelona-64 -DSPEC_CPU_LP64

pgepp -w -fastsse -Mipa=fast,inline -Mfprelaxed -Msmartalloc=huge:448 --zc_eh
-tp barcelona -DSPEC_CPU_LP64

The following command-line options are used for the base floating-point component of
SPECcpu2006 (CFP2006):

e 435.gromacs, 436.cactusADM, and 454.calculix

pgee -w -fast -Mipa=fast, inline -Mfprelaxed -Msmartalloc=huge:448 -tp barcelona-64
-DSPEC_CPU_LP64

pef95 -w -fast -Mipa=fast,inline -Mfprelaxed -Msmartalloc=huge:448 -Mnomain
-tp barcelona-64 -DSPEC_CPU_LP64

o 481.wrf

pgee -w -fast -Mipa=fast, inline -Mfprelaxed -Msmartalloc=huge:448 -tp barcelona-64
-DSPEC_CPU_CASE_FLAG -DSPEC_CPU_LINUX

* All remaining integer components of CFP2006

pgee -w -fast Mipa=fast, inline -Mfprelaxed -Msmartalloc=huge:448 tp barcelona-64
-DSPEC_CPU_LP64

pgepp -w -fast -Mipa=fast, inline -Mfprelaxed -Msmartalloc=huge:448 -zc_eh
-tp barcelona-64 -DSPEC_CPU_LP64

pef95 -w -fast -Mipa=fast,inline -Mfprelaxed -Msmartalloc=huge:448 -tp barcelona-64
-DSPEC_CPU_LP64

56 Peak Options for SPE C®-CPU Benchmark Programs Chapter 5

AMDZU

32035 Rev. 3.22 November 2007

5.1.2

Compiler Usage Guidelines for AMDG64 Platforms

Peak Command-line Options

The table below specifies the best-known peak switches for various benchmarks in the SPECcpu2006
suite for the 64-bit PGI Release 7.1 compilers for Linux® on AMD Athlon™ 64 processor based
platforms and AMD Opteron™ processor-based platforms.

Table 10. Best-Known Peak Switches for the 64-Bit PGl Compilers for Linux®

Application Area | Benchmark Language | Best Known Peak Switches
CINT20063
pgcc -w -fast -O4 -Mfprelaxed -Msmartalloc=huge:448

Programming -Mnounroll -Mpfi(pass 1) -Mpfo(pass 2)

Language 400.perlbench ANSIC -Mipa=inline(pass 2) -tp barcelona-64
-DSPEC_CPU_LP64 -DSPEC_CPU_LINUX_X64
pgcc -w -fast -O4 -Msmartalloc=huge:448

Compression 401.bzip2 ANSI C | -Mpfi(pass 1) -Mpfo(pass 2) -tp barcelona-64 -Mpfo
-DSPEC_CPU_LP64

GNU C compiler 403.gcc c pgcc -w -fagts_se -Mfprelaxed -Msmartalloc=huge:448
-Mipa=fast, inline -tp barcelona

Combinational 1 | pgcc -w -fastsse -Mipa=fast, inline:1

Optimization 429.mef ANSI C -Msmartalloc=huge:420 -tp barcelona
pgcc -w -fast -O4 -Msmartalloc=huge:448 -Mfprelaxed

Artificial -Mnovect -tp barcelona-64 -Mpfi(pass 1)

Intelligence: Go 445.gobmk C -Mpfo(pass 2) -Mipa=fast(pass 2)
-DSPEC_CPU_LP64
pgcc -w -fast -Msmartalloc=huge:448 -Mfprelaxed

ggalrjcehn((:ieene 456.hmmer C -Msafeptr -Mipa=const, ptr, arg -tp barcelona-64

9 -DSPEC_CPU_LP64

Artificial pgcc -w -fast -Msmartalloc=huge:448 -Mfprelaxed

Intelligence: 458.sjeng ANsI c | "I barcelona-64 .-Mpf|(pass 1) -Mpfo(pass 2)

Chess -Mipa=fast, inline:1, noarg(pass 2)
-DSPEC_CPU_LP64

. pgcc -w -fast -Mfprelaxed -Msmartalloc=huge:448
zgﬁlclii/n()uantum 462.libquantum “C99” -Munroll=m:4 -Mipa=fast, inline, noarg
puting -DSPEC_CPU_LP64 -DSPEC_CPU_LINUX

Video . 464.h264ref C Use base binaries and/or base results for peak.

compression

D]screte_ Event 471.omnetpp C++ Use base binaries and/or base results for peak.

Simulation

Path-finding I

. 473.astar C++ Use base binaries and/or base results for peak.

Algorithms

Notes:

1. Mathematical library (libm) required

2. Boost Library required

3. Smartheap libraries utilized. If the Smartheap libraries are not loaded, xalancbmk performs better with the
-Msmartalloc=huge:160 option.

Chapter 5 Peak Options for SPEC®-CPU Benchmark Programs 57

http://www.spec.org/cpu2006/Docs/400.perlbench.html
http://www.spec.org/cpu2006/Docs/401.bzip2.html
http://www.spec.org/cpu2006/Docs/403.gcc.html
http://www.spec.org/cpu2006/Docs/429.mcf.html
http://www.spec.org/cpu2006/Docs/445.gobmk.html
http://www.spec.org/cpu2006/Docs/456.hmmer.html
http://www.spec.org/cpu2006/Docs/458.sjeng.html
http://www.spec.org/cpu2006/Docs/462.libquantum.html
http://www.spec.org/cpu2006/Docs/464.h264ref.html
http://www.spec.org/cpu2006/Docs/471.omnetpp.html
http://www.spec.org/cpu2006/Docs/473.astar.html

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms

32035 Rev. 3.22 November 2007

Table 10. Best-Known Peak Switches for the 64-Bit PGl Compilers for Linux®

Application Area | Benchmark Language | Best Known Peak Switches
pgcpp -w -fastsse -O4 -Mipa=fast, inline -Mfprelaxed
XML Processing 483.xalancbmk C++3 -Msmartalloc --zc_eh -tp Barcelona
-DSPEC_CPU_LINUX
CFP2006
Fluid Dynamics 410.bwaves Fortran 77 | Use base binaries and/or base results for peak.
Quantum 416.gamess Fortran |pgf95 -w -fast -Mipa=fast, inline -Mfprelaxed
Chemistry -Mvect=noaltcode -Msmartalloc=huge:448
-tp barcelona-64 - DSPEC_CPU_LP64
Physics/Quantum | 433.milc C pgcc -w -fast -O4 -Mdse -Mfprelaxed
Chromodynamics -Msmartalloc=huge:448 -Mpfi(pass 1)
-Mipa=fast, inline, noarg(pass 2) -Mpfo(pass 2)
-tp barcelona-64 -DSPEC_CPU_LP64
Physics / CFD 434.zeusmp Fortran 77 | Use base binaries and/or base results for peak.
pgcc -w -fast -Mfpapprox=rsqrt -Mipa=fast,inline
.) C -Mfprelaxed -Msmartalloc=huge:448 -tp barcelona-64
Biochemistry / _DSPEC CPU LP64
Molecular 435.gromacs = - - —
Dynamics pgf95 -w -fast -Mfpapprox=rsqrt -Mipa=fast,inline
Fortran | -Mfprelaxed -Msmartalloc=huge:448 -tp barcelona-64
-Mnomain -DSPEC_CPU_LP64
i ANSI C | Use base binaries and/or base results for peak.
Phys!c_s/GeneraI 436.cactusADM nar p
Relativity Fortran 90 | Use base binaries and/or base results for peak.
Fluid Dynamics 437.leslie3d Fortran 90 | Use base binaries and/or base results for peak.
pgcpp -w -fast -O4 -Mfprelaxed
Bioloay / -Msmartalloc=huge:448 -zc_eh -tp barcelona-64
9y -Mnodepchk -Mprefetch -Msafe_lastval
Molecular 444.namd C++ . ;]
Dvnamics -Msafeptr=static -MstrideO -Munroll=n:4
y -Mvect=noidiom -Mvect=prefetch
-DSPEC_CPU_LP64
- pgcpp -w -fast -Mfprelaxed -Msmartalloc=huge:448
il:;tlesEilsement 447.dealll C42 --zc_eh -Mnovect -alias=ansi -Mipa=fast,inline
v tp barcelona-64 -DSPEC_CPU_LP64
Linear Use base binaries and/or base results for peak.
Programming, 450.s0plex ANSI C++
Optimization
Use base binaries and/or base results for peak.
Image 453.povray ISO C++ P
Ray-Tracing
Structural) C Use base binaries and/or base results for peak.
. 454.calculix —
Mechanics Fortran90 | Use base binaries and/or base results for peak.
Notes:

1. Mathematical library (libm) required

2. Boost Library required

3. Smartheap libraries utilized. If the Smartheap libraries are not loaded, xalancbmk performs better with the
-Msmartalloc=huge:160 option.

58 Peak Options for SPE C®-CPU Benchmark Programs Chapter 5

http://www.spec.org/cpu2006/Docs/483.xalancbmk.html
http://www.spec.org/cpu2006/Docs/410.bwaves.html
http://www.spec.org/cpu2006/Docs/416.gamess.html
http://www.spec.org/cpu2006/Docs/433.milc.html
http://www.spec.org/cpu2006/Docs/435.gromacs.html
http://www.spec.org/cpu2006/Docs/436.cactusADM.html
http://www.spec.org/cpu2006/Docs/437.leslie3d.html
http://www.spec.org/cpu2006/Docs/444.namd.html
http://www.spec.org/cpu2006/Docs/447.dealII.html
http://www.spec.org/cpu2006/Docs/450.soplex.html
http://www.spec.org/cpu2006/Docs/453.povray.html
http://www.spec.org/cpu2006/Docs/454.calculix.html

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

Table 10. Best-Known Peak Switches for the 64-Bit PGl Compilers for Linux®

Application Area | Benchmark Language | Best Known Peak Switches

pgf95 -w -fast -O4 -Mdse -Mipa=fast,inline

Computational 459.GemsFDTD Fortran 90 | -Mfprelaxed -Msmartalloc=huge:448 -tp barcelona-64

Electromagnetics _DSPEC_CPU_LP64
Quantum pgf95 w -fast -O4 -Mfprelaxed -Msmartalloc=huge:448
Chemistr 465.tonto Fortran 95 | -Mipa=fast,inline -Mvect=noaltcode tp barcelona 64
y DSPEC_CPU_LP64
Fluid Dynamics 470.1bm ANSI C | Use base binaries and/or base results for peak.

pgcc -w -fast -Mfprelaxed -Msmartalloc=huge:448
C -Mvect=noaltcode -tp barcelona-64
-DSPEC_CPU_LP64

Weather 481.wrf
paf95 -w -fast -Mfprelaxed -Msmartalloc=huge:448
Fortran 90 | -Mvect=noaltcode -tp barcelona-64
-DSPEC_CPU_LP64
Speech_ . 482.sphinx3 C Use base binaries and/or base results for peak.
recognition
Notes:

1. Mathematical library (libm) required

2. Boost Library required

3. Smartheap libraries utilized. If the Smartheap libraries are not loaded, xalancbmk performs better with the
-Msmartalloc=huge:160 option.

5.2 PGl Release 7.1 Compilers (32- and 64-Bit) for
Microsoft® Windows®

5.2.1 Invoking the Compilers

To translate and link SPECcpu2006 benchmarks with PGI Fortran, C, or C++ compilers the following
commands are used:

* pgcc -w invokes the PGI C compiler
e pgcpp -w invokes the PGI C++ compiler
e pgf95 -w invokes the PGI Fortran 90/95 compiler

5.2.2 Base Command-line Options

The best-known base switches for various benchmarks in SPECcpu2006 suite for 64-bit PGI Release
7.1 compilers for Linux on AMD Athlon™ 64 , AMD Opteron™ and AMD Family 10h processor-
based platforms. The following command-line options are used for base integer component of
SPECcpu2006 (CINT2006).

Chapter 5 Peak Options for SPEC®-CPU Benchmark Programs 59

http://www.spec.org/cpu2006/Docs/459.GemsFDTD.html
http://www.spec.org/cpu2006/Docs/470.lbm.html
http://www.spec.org/cpu2006/Docs/470.lbm.html
http://www.spec.org/cpu2006/Docs/482.sphinx3.html

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

By default all benchmark programs use the following option:

OPTIMIZE = -stack=nocheck,39000000,39000000

Note: INT base C++ are compiled as 32-bit binaries. SmartHeap libraries are required for INT

C++ base.

400.perlbench

pgee -w -fast -Mipa=fast, inline, noarg -Mfprelaxed -Msmartalloc=huge:16
-tp barcelona-64 -DSPEC_CPU_WIN64 X64

403.gcc

pgee w -fast -Mipa=fast, inline, noarg -Mfprelaxed -Msmartalloc=huge:16 -tp barcelona-64
-DSPEC_CPU_WIN64 -DSPEC_CPU_NEED ALLOCA_H

462.libquantum

pgee -w -fast -Mipa=fast, inline, noarg -Mfprelaxed -Msmartalloc=huge:16
-tp barcelona-64 -DSPEC_CPU_COMPLEX I

464.h264ref

pgee -w -fast -Mipa=fast, inline, noarg -Mfprelaxed -Msmartalloc=huge:16
-tp barcelona-64 -DSPEC_CPU_NO_INTTYPES -DWIN32

471.omnetpp

pgepp -w -fastsse -Mipa=fast, inline -Mfprelaxed --zc_eh -tp barcelona
-DSPEC_CPU_WIN64_X64

483 .xalancbmk

pgepp -w -fastsse -Mipa=fast, inline -Mfprelaxed --zc_eh -tp barcelona
-DSPEC_CPU_XMLCH_IS NOT_UNSIGNED_SHORT

All remaining integer components of CINT2006

pgee w -fast -Mipa=fast, inline, noarg -Mfprelaxed -Msmartalloc=huge:16 -tp barcelona-64
-DSPEC_CPU_WIN64_X64

pgepp W -fastsse -Mipa=fast, inline -Mfprelaxed --zc_eh -tp barcelona -
DSPEC_CPU_WIN64 X64

The following command-line options are used for base floating point component of SPECcpu2006
(CFP2006).

435.gromacs
pgee -w -fast -Mipa=fast, inline -Mfprelaxed - tp barcelona-64
-DSPEC_CPU_APPEND UNDERSCORE -DSPEC_CPU_HAVE_ERF

pef95 -w -fast -Mipa=fast,inline -Mfprelaxed -Mnomain -tp-barcelona-64
-DSPEC_CPU_WIN64_X64

60

Peak Options for SPE C®-CPU Benchmark Programs Chapter 5

AMDZU

32035 Rev.3.22 November 2007 Compiler Usage Guidelines for AMDG64 Platforms

436.cactusADM

pgee -w -fast -Mipa=fast, inline -Mfprelaxed -tp barcelona-64
-DSPEC_CPU_WIN64_Xo64

pef95 -w -fast -Mipa=fast,inline -Mfprelaxed -Mnomain -tp barcelona-64
-DSPEC_CPU_WIN64_X64

453.povray

pgepp -w -fast -Mipa=fast, inline -Mfprelaxed -zc_eh -tp barcelona-64
-DSPEC_CPU_INVHYP -DNEED INVHYP

454 calculix

pgee -w -fast -Mipa=fast, inline -Mfprelaxed -tp barcelona-64
-DSPEC_CPU_APPEND_UNDERSCORE -DSPEC_CPU_NOZMODIFIER

pgf9S -w -fast -Mipa=fast,inline -Mfprelaxed -Mnomain -tp barcelona-64
-DSPEC_CPU_WIN64_Xo64

481.wrf

pgee -w -fast -Mipa=fast, inline -Mfprelaxed -tp barcelona-64
-DSPEC_CPU_CASE_FLAG -DSPEC_CPU_NEEDIO_H

All remaining floating point components of CFP2006

pgee -w -fast -Mipa=fast, inline -Mfprelaxed -tp barcelona-64 -DSPEC_CPU_P64

pgepp -w -fast -Mipa=fast, inline -Mfprelaxed -zc_eh -tp barcelona-64
-DSPEC_CPU_WIN64_X64

pef9S -w -fast -Mipa=fast,inline -Mfprelaxed -tp barcelona-64
-DSPEC_CPU_WIN64_ X64

Chapter 5 Peak Options for SPEC®-CPU Benchmark Programs 61

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms

5.2.3

32035 Rev. 3.22 November 2007

Peak Command-line Options

The table below delineates the best-known peak switches for various benchmarks in the
SPECcpu2006 suite for the 64-bit PGI Release 7.1 compilers for Windows® on AMD Athlon™ 64,
AMD Opteron™ and Amd Family 10h processor-based platforms.

Table 11. Best-Known Peak Switches for the 64-Bit PGl Compilers for Microsoft®
Windows®
Application Area | Benchmark Language | Best Known Peak Switches
CINT2006°
pgcc -w -fast -O4 -Mfprelaxed -Mnounroll -Mnodll
Programming -Mpfi(pass 1) -Mpfo(pass 2) -Mipa=inline(pass 2)
Language 400.peribench ANSI C -tp barcelona-64 -DSPEC_CPU_LP64
-DSPEC_CPU_WIN64_X64
pgcc -w -fast -O4 -Msmartalloc=huge:8 -Mnodll
Compression 401.bzip2 ANSI C | -tp barcelona-64 -Mpfi(pass 1) -Mpfo(pass 2)
-DSPEC_CPU_P64
pgcc -w -fastsse -Mfprelaxed -Mnodll -Mpfi(pass 1)
. -Mpfo(pass 2) -Mipa=fast, inline(pass 2) -tp barcelona
GNU C compiler 403.gcc C _DSPEC_CPU_WIN32
-DSPEC_CPU_NEEDALLOCA_H
Combinational 429.mcf 1 | Pgcc -w -fastsse -Mipa=fast, inline:1
oo .mc
Optimization ANSIC™ | Minodil tp barcelona®
pgcc -w -fast -Msmartalloc=huge:8 -Mfprelaxed
g:alrjcehngeene 456.hmmer C -Msafeptr -Mipa=const, ptr, arg Mnodll
q -tp barcelona-64 -DSPEC_CPU_P64
Artificial pgcc -w -fast -Msmartalloc=huge:8 -Mfprelaxed
Intelligence: 458.5jeng ANSI C -M_nodll -tp b.arlcellona-64 -Mpfi(pass 1) -Mpfo(pass 2)
Chess -Mipa=fast, inline:1, noarg(pass 2)
-DSPEC_CPU_P64
. pgcc -w -fast -Mfprelaxed -Msmartalloc=huge:8
Egyr/:ml;sti/nQuantum 462.libquantum “C99” -Munroll=m:4 -Mipa=fast, inline, noarg -Mnodll
puting -DSPEC_CPU_P64 -DSPEC_CPU_COMPLEX_|
Video . 464.h264ref C Use base binaries and/or base results for peak.
compression
D}scretg Event 471.omnetpp C++ Use base binaries and/or base results for peak.
Simulation
Path-flndmg 473.astar C++ Use base binaries and/or base results for peak.
Algorithms
Notes:

1. Mathematical library (libm) required.

2. Boost Library required.
3. SmartHeap libraries utilized.
4. SmartHeap library is used.

62

Peak Options for SPE C®-CPU Benchmark Programs

Chapter 5

http://www.spec.org/cpu2006/Docs/400.perlbench.html
http://www.spec.org/cpu2006/Docs/401.bzip2.html
http://www.spec.org/cpu2006/Docs/403.gcc.html
http://www.spec.org/cpu2006/Docs/429.mcf.html
http://www.spec.org/cpu2006/Docs/456.hmmer.html
http://www.spec.org/cpu2006/Docs/458.sjeng.html
http://www.spec.org/cpu2006/Docs/462.libquantum.html
http://www.spec.org/cpu2006/Docs/464.h264ref.html
http://www.spec.org/cpu2006/Docs/471.omnetpp.html
http://www.spec.org/cpu2006/Docs/473.astar.html

AMDZU

32035 Rev. 3.22 November 2007

Compiler Usage Guidelines for AMDG64 Platforms

Table 11. Best-Known Peak Switches for the 64-Bit PGl Compilers for Microsoft®

Windows®
Application Area | Benchmark Language | Best Known Peak Switches
XML Processing 483.xalanchmk Cit Use base blnar_|e§ and/or base results for peak and
also srcalt=pgiwin.
CFP2006
Fluid Dynamics 410.bwaves Fortran 77 | Use base binaries and/or base results for peak.
Quantum 416.gamess Fortran |pgf95 -w -fast -Mipa=fast, inline -Mfprelaxed
Chemistry -Mnovect -Mnodll -tp barcelona-64
- DSPEC_CPU_P64
Physics/Quantum | 433.milc C pgcc -w -fast -O4 -Mdse -Mfprelaxed
Chromodynamics -Msmartalloc=huge:448 -Mpfi(pass 1)
-Mipa=fast, inline, noarg(pass 2) -Mpfo(pass 2)
-tp barcelona-64 -DSPEC_CPU_LP64
Physics / CFD .434.zeusmp Fortran 77 | Use base binaries and/or base results for peak.
pgcc -w -fast Mfpapprox=rsqrt -Mipa=fast,inline
-Mfprelaxed -Msmartalloc -Mnodll -tp barcelona-64
c LDPORTABILITY = -Mnomain
Biochemistry / CPORTABILITY=-DSPEC_CPU_APPEND_UNDERSCORE
Molecular 435.gromacs -DSPEC_CPU_HAVE_ERF
Dynamics srcalt=have_erf
pgf95 -w -fast -Mfpapprox=rsqrt -Mipa=fast,inline
Fortran | -Mfprelaxed -Msmartalloc -Mnodll-tp barcelona-64
-Mnomain -DSPEC_CPU_P64
i ANSI C | Use base binaries and/or base results for peak.
Physics/General | o5 - ciusADM _— P
Relativity Fortran 90 | Use base binaries and/or base results for peak.
Fluid Dynamics | 437.leslie3d Fortran 90 | Use base binaries and/or base results for peak.
pgcpp -w -fast -O4 -Mfprelaxed
Bioloay / -Msmartalloc -zc_eh -tp barcelona-64
9y -Mnodepchk -Mprefetch -Msafe_lastval
Molecular 444.namd C++ . ; i
Dynamics -Msafeptr=static -MstrideO -Munroll=n:4
y -Mvect=noidiom -Mvect=prefetch
-DSPEC_CPU_P64
- pgcpp -w -fast -Mfprelaxed -Msmartalloc
il:;tlesEilsement 447.dealll C++2 -zc_eh -Mnovect -alias=ansi -Mipa=fast,inline
v -Mnodll -tp barcelona-64 -DSPEC_CPU_P64
Linear pgcpp -w -fast -Mipa=fast, inline -Mfprelaxed -zc_eh
Programming, 450.soplex ANSI C++ | -Mnodll -tp barcelona-64 -DSPEC_CPU_P64
Optimization
Notes:
1. Mathematical library (libm) required.
2. Boost Library required.
3. SmartHeap libraries utilized.
4. SmartHeap library is used.
Chapter 5 Peak Options for SPEC®-CPU Benchmark Programs 63

http://www.spec.org/cpu2006/Docs/483.xalancbmk.html
http://www.spec.org/cpu2006/Docs/410.bwaves.html
http://www.spec.org/cpu2006/Docs/416.gamess.html
http://www.spec.org/cpu2006/Docs/433.milc.html
http://www.spec.org/cpu2006/Docs/434.zeusmp.html
http://www.spec.org/cpu2006/Docs/435.gromacs.html
http://www.spec.org/cpu2006/Docs/436.cactusADM.html
http://www.spec.org/cpu2006/Docs/437.leslie3d.html
http://www.spec.org/cpu2006/Docs/444.namd.html
http://www.spec.org/cpu2006/Docs/447.dealII.html
http://www.spec.org/cpu2006/Docs/450.soplex.html

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

Table 11. Best-Known Peak Switches for the 64-Bit PGl Compilers for Microsoft®

Windows®
Application Area | Benchmark Language | Best Known Peak Switches
Use base binaries and/or base results for peak.
Image 453 povray ISO G+ P
Ray-Tracing
Structural) C Use base binaries and/or base results for peak.
. 454.calculix —
Mechanics Fortran90 | Use base binaries and/or base results for peak.

pgf95 -w -fast -O4 -Mdse -Mipa=fast,inline
459.GemsFDTD Fortran 90 | -Mfprelaxed -Mnodll -tp barcelona-64
-DSPEC_CPU_P64

Computational
Electromagnetics

pgf95 w -fast -O4 -Mfprelaxed -Msmartalloc

8::::;::: 465.tonto Fortran 95 | -Mipa=fast,inline -Mvect=noaltcode -Mnodll
y -tp barcelona-64 -DSPEC_CPU_P64
Fluid Dynamics | 470.lbm ANSI C | Use base binaries and/or base results for peak.

pgcc -w -fast -Mfprelaxed -Msmartalloc
-Mvect=noaltcode -Mnodll -tp barcelona-64
-DSPEC_CPU_P64
CPORTABILITY=-DSPEC_CPU_CASE_FLAG
Weather 481.wrf -DSPEC_CPU_NEED_IO_H
srcalt=need_io_h

pgf95 -w -fast -Mfprelaxed -Msmartalloc
Fortran 90 | -Mvect=noaltcode -Mnodll -tp barcelona-64
-DSPEC_CPU_P64

Speech . pgcc -w -fast -Mipa=fast, inline -Mfprelaxed -Mnodll
recognition 482.sphinx3 C -tp barcelona-64 -DSPEC_CPU_P64
Notes:

1. Mathematical library (libm) required.
Boost Library required.

SmartHeap libraries utilized.
SmartHeap library is used.

AW

5.3 SuSE GCC 4.2.0(64-Bit) C/C++ Compiler for Linux®

Table 12 shows the best-known peak switches for various benchmarks in the SPEC-CPU2000 suite
for the SuSE 64-bit GCC C/C++ compiler for Linux® on AMD Athlon™ 64 processor-based
platforms and AMD Opteron™ processor-based platforms. For AMD Family 10h processor-based
platforms, add the -march=amdfam10 switch.

Table 12. Best-K®nown Peak Switches for the 64-Bit SuSE GCC 3.3.3 C/C++ Compiler for
Linux

Benchmark Program Best-Known Peak Switches

Note: The -m32 switch improves the performance of 181.mcf, 197.parser and 300.twolf by
reducing memory footprint.

64 Peak Options for SPE C®-CPU Benchmark Programs Chapter 5

http://www.spec.org/cpu2006/Docs/453.povray.html
http://www.spec.org/cpu2006/Docs/454.calculix.html
http://www.spec.org/cpu2006/Docs/459.GemsFDTD.html
http://www.spec.org/cpu2006/Docs/470.lbm.html
http://www.spec.org/cpu2006/Docs/470.lbm.html
http://www.spec.org/cpu2006/Docs/482.sphinx3.html

AMDZU

32035 Rev. 3.22 November 2007

Compiler Usage Guidelines for AMDG64 Platforms

Table 12. Best-Known Peak Switches for the 64-Bit SuSE GCC 3.3.3 C/C++ Compiler for
Linux® (Continued)

164.9zip:

-03 -funroll-all-loops -finline-limit=900
-freduce-all-givs and
-fprofile-arcs/-fbranch-probabilities

175.vpr:

-03 -funroll-all-loops -finline-limit=1000 and
-fprofile-arcs/-fbranch-probabilities

176.gcc:

-03 -funroll-all-loops -finline-limit=900 and
-fprofile-arcs/-fbranch-probabilities

181.mcf:

-03 -funroll-all-loops -m32, and
-fprofile-arcs/-fbranch-probabilities

186.crafty:

-03 -funroll-all-loops and -fprefetch-loop-arrays

197.parser:

-03 -funroll-all-loops -m32, and
-fprofile-arcs/-fbranch-probabilities

252.eon:

-03 -funroll-all-loops -ffast-math -finline-limit=3000 and -
fprofile-arcs/-fbranch-probabilities

253.perlbmk:

-03 -funroll-all-loops -finline-limit=1000 and
-fprofile-arcs/-fbranch-probabilities

254.gap:

-03 -funroll-all-loops and
-fprofile-arcs/-fbranch-probabilities

255.vortex:

-03 -funroll-all-loops -finline-limit=1000 and
-fprofile-arcs/-fbranch-probabilities

256.bzip2:

-03 -funroll-all-loops -freduce-all-givs
-finline-limit=2700 and
-fprofile-arcs/-fbranch-probabilities

300.twolf:

-03 -funroll-all-loops -freduce-all-givs
-finline-limit=2000 and
-fprofile-arcs/-fbranch-probabilities

17.mesa:

-03 -funroll-all-loops -finline-limit=2000 and
-fprofile-arcs/-fbranch-probabilities

179.art:

-03 -funroll-all-loops -ffast-math
~finline-limit=1500 and
-fprofile-arcs/-fbranch-probabilities

183.equake:

-03 -funroll-all-loops -ffast-math
-finline-limit=2000 and
-fprofile-arcs/-fbranch-probabilities

188.ammp:

-03 -funroll-all-loops -ffast-math
-finline-limit=2000 and
-fprofile-arcs/-fbranch-probabilities

Note: The -m32 switch improves the performance of 181.mcf, 197.parser and 300.twolf by
reducing memory footprint.

Chapter 5

Peak Options for SPEC®-CPU Benchmark Programs

65

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms 32035 Rev.3.22 November 2007

5.4 Pathscale EKO 3.0 C/C++ Compiler (64-Bit) for
Linux®

Table 13 shows the best-known peak switches for various benchmarks in the SPEC-CPU2000 suite
for the PathScale C/C++ compiler (64-bit) for Linux® on AMD Athlon™ 64 processor-based
platforms and AMD Opteron™ processor-based platforms.

Table 13. Best-Known Peak Switches for the Pathscale 1.4 C/C++ Compiler for

Linux®
Benchmark Program Best-Known Peak Switches
164.9zip: -03 -ipa -m3dnow -WOPT:val=0 +FDO
175.vpr: -02 -ipa -OPT:alias=disjoint -CG:p2align_freq=500000
+FDO -INLINE:aggressive=on
-IPA:space=300:plimit=10000:callee_limit=5000:linear=on
176.gcc: -03 -ipa -OPT:goto=off +FDO
181.mcf: -0O3 -ipa -IPA:field_reorder=on -m32 +FDO
186.crafty: -03 -OPT:goto=off +FDO
197.parser: -03 -ipa -m32 -IPA:ctype=on +FDO
252.eon: -Ofast -CG:gcm=off:p2align_freq=1:prefetch=off
-OPT:treeheight=on -LNO:fu=10:full_unroll_outer=on
-TENV:X=4:frame_pointer=off -fno-exceptions
-IPA:plimit=4000 +FDO
253.perlbmk: -03 -ipa +FDO -IPA:plimit=10000
254.gap: -Ofast -WOPT:aggstr=off +FDO
255.vortex -Ofast -IPA:plimit=1800 -OPT:goto=off
-CG:p2align=on +FDO
256.bzip2 -Ofast +FDO
300.twolf -02 -CG:gcm=off:p2align_freq=100000 -WOPT:mem_opnds=on
+FDO -m32
-OPT:unroll_times_max=8:unroll_size=256:alias=disjoint:Ofast
177.mesa -02 -ipa -OPT:Ofast -fno-math-errno -CG:local_fwd_sched=on
+FDO
179.art -03 -OPT:ro=2:div_split=on:alias=typed -fno-math-errno -m32
+FDO
183.equake -Ofast -WOPT:mem_opnds=on -m32
188.ammp -03 -OPT:alias=disjoint:unroll_times_max=8:0fast:ro=3
-fno-math-errno -TENV:X=4 +FDO
Note: FDO is feedback optimization-PASS 1= -fb_create fbdata and PASS2= -fb_opt fbdata.

66

Peak Options for SPE C®-CPU Benchmark Programs

AMDZU

32035 Rev. 3.22 November 2007

5.5
Linux®

Pathscale EKO 3.0 Fortran Compiler (64-bit) for

Compiler Usage Guidelines for AMDG64 Platforms

Table 14 shows the best-known peak switches for various benchmarks in the SPEC-CPU2000 suite
for the Pathscale Fortran compiler (64-bit) for Linux® on AMD Athlon™ 64 processor-based
platforms and AMD Opteron™ processor-based platforms.

Table 14. Best-Known Peak Switches for the 64-bit Pathscale 2.4 Fortran Compiler

for Linux®

Benchmark Program

Best-Known Peak Switches

168.wupwise:

-Ofast -LNO:prefetch_ahead=5:prefetch=3
-OPT:unroll_times_max=8:unroll_size=128:IEEE_NaN_Inf=off:ro=3
-TENV:X=4 +FDO
-IPA:space=1000:linear=on:plimit=50000:callee_limit=5000
-INLINE:aggressive=on

171.swim:

-Ofast -LNO:fusion=2 -m3dnow

172.mgrid:

-O3 -LNO:fusion=2:blocking=off
-OPT:Ofast:unroll_times max=8:unroll_size=256:ro=3
-CG:gcm=off:cflow=off -m3dnow

173.applu:

-Ofast -CG:local_fwd_sched=on
-LNO:fusion=2:fission=2:full_unroll_size=10000:prefetch=3
-OPT:ro=3 -TENV:X=3 -WOPT:val=2

178.galgel:

-Ofast -OPT:fast_complex -CG:use_movlpd=on +ACML

187.facerec:

-Ofast -OPT:treeheight=on:IEEE_NaN Inf=off:ro=3 -CG:load_exe=0
-LNO:fusion=2 -IPA:plimit=1500 -WOPT:if conv=off +FDO

189.1lucas: -Ofast -CG:local_fwd_sched=on -LNO:fusion=2
+FDO
191.fma3d: -02 -ipa -WOPT:mem_opnds=on:retype expr=on -CG:load_exe=1
-OPT:Ofast:IEEE_arith=3:ro=3 +FDO -IPA:pu_reorder=1
200.sixtrack: -03 -CG:load_exe=1 -OPT:Ofast:0Olimit=6000 -fno-math-errno +FDO
301.apsi: -Ofast -TENV:X=4 -LNO:fusion=2:prefetch=0

Note: +FDO is feedback optimization—PASS1= -fb_create fbdata and PASS2= -fb_opt fbdata.

Chapter 5

Peak Options for SPEC®-CPU Benchmark Programs

67

AMDZ\
Compiler Usage Guidelines for AMDG64 Platforms

32035 Rev. 3.22 November 2007

5.6 Intel 9.0 C/C++ Compiler for (32-Bit) Microsoft®
Windows®

Table 15 shows the best-known peak switches for various programs in the SPEC-CPU2000
benchmarks for the 32-bit Intel 8.0 C/C++ compiler for Microsoft Windows on AMD Athlon™ 64
processor-based platforms and AMD Opteron™ processor-based platforms.

Table 15. Best-Known Peak Switches for the 32-Bit Intel 8.0 C/C++ Compiler for
Microsoft® Windows®

Benchmark Program Best-Known Peak Switches
164.9zip: -fast, -arch:SSE, shIW32M6.lib, and -prof_gen/-prof_use
175.vpr: -fast, -arch:SSE2, -prof_gen/-prof_use,
-Qoption,c,-ip_ninl_max_stats=2000, and
-Qoption,c,-ip_ninl_max_total_stats=4500
176.gcc: -fast, -arch:SSE2, -prof_gen/-prof_use, -Oi-, and -QunrolI3
181.mcf: -fast, -QaxN, and -prof_gen/-prof_use
186.crafty: -fast, -arch:SSE2, and -prof_gen/-prof_use
197.parser: -arch:SSE2, -prof_gen/-prof_use, -Oi-, and -Qipo
252.eon: -fast -arch:SSE2 -prof_gen/-prof_use -Qansi_alias,
-Qoption,c,-ip_ninl_max_stats=2000 and
-Qoption,c,-ip_ninl_max_total_stats=4500
253.perlbmk: -arch:SSE2 -prof_gen/-prof_use -Qipo and shiIW32M6.lib
254.gap: -fast -arch:SSE2 -prof_gen/-prof_use -Oi- -Oa
-Qoption,c,-ip_ninl_max_stats=500 and
-Qoption,c,-ip_ninl_max_total_stats=3000
255.vortex: -fast -arch:SSE -prof_gen/-prof_use -Oi- shIW32Mé6.lib
-Qoption,c,-ip_ninl_max_stats=2000 and
-Qoption,c,- ip_ninl_max_total_stats=4500
256.bzip2: -fast and -Qunroll2
300.twolf: -fast -arch:SSE2 -prof_gen/-prof_use -Qunroll3
shIW32M6.lib and -Qansi_alias
177.mesa: -Qipo -arch:SSE2 -Qunroll1 -Qansi_alias
-Qoption,f,-ip_ninl_max_stats=1500
-Qoption,f,-ip_ninl_max_total_stats=4500 and
-Qprof_gen/-Qprof_use
179.art: -Qipo and -Zp4
183.equake: -fast -arch:SSE2 -QaxW -Qansi_alias and
-Qprof_gen/-Qprof_use
188.ammp: -Oa -arch:SSE2 -Zp4 -Qansi_alias and
-Qprof_gen/-Qprof_use

68

Peak Options for SPE C®-CPU Benchmark Programs

Chapter 5

AMDZ\
Compiler Usage Guidelines for AMDG64 Platforms

32035 Rev. 3.22 November 2007

5.7 Sun C/C++ Compiler (64-bit) for Solaris

Table 16 shows the best-known peak switches for various programs in the SPEC-CPU2000
benchmarks for the 64-bit Sun C and C++ compilers (version 5.7) for Solaris on AMD Athlon™ 64
processor-based platforms and AMD Opteron™ processor-based platforms.

Table 16. Best-Known Peak Switches for the 64-bit Sun C/C++ Compilers for Solaris

Benchmark Program Best-Known Peak Switches
164.9zip: -fast -xpagesize=2m -xcrossfile -M /ustr/lib/ld/map.bssalign
175.vpr: -fast -xpagesize=2m -W2,-Ainline:inc=200:cs=500 -M
lusr/lib/ld/map.bssalign -Imopt
176.gcc: -fast -xpagesize=2m -M /usr/lib/ld/map.bssalign
181.mcf: -fast -xpagesize=2m -xcrossfile -M /usr/lib/Id/map.bssalign
186.crafty: -fast -xpagesize=2m -xcrossfile -xarch=amd64 -M
lusr/lib/ld/map.bssalign -Ibsdmalloc
197.parser: -fast -xpagesize=2m -xipo=2 -W2,-Ainline:inc=200:cs=500 -
M /usr/lib/ld/map.bssalign
252.eon: -fast -xpagesize=2m -xcrossfile -Qoption ube -ZB -Qoption
ube -xcallee=yes -xarch=amd64 -M /ust/lib/ld/map.bssalign
253.perlbmk: -fast -xcrossfile -M /usr/lib/Id/map.bssalign -Ibsdmalloc
254.gap: -Xc -fast -xipo=2 -M /usr/lib/ld/map.bssalign
255.vortex: -fast -xcrossfile -xarch=amd64 -Xc -Wu,-ZB -Wu,-
xcallee=yes -M /ustr/lib/Id/map.bssalign
256.bzip2: -fast -xpagesize=2m -xcrossfile -xarch=sse2 -Xc -M
lusr/lib/ld/map.bssalign -Ibsdmalloc
300.twolf: -fast -xpagesize=2m -xcrossfile -M /usr/lib/Id/map.bssalign
177.mesa: -fast -xipo=2 -xarch=amd64 -xalias_level=strong -
xpagesize=2m +FDO
179.art: -fast -xipo=2 -xarch=amd64 -xalias_level=std -
xpagesize=2m -Xc -M /ust/lib/ld/map.bssalign -Im
183.equake: -fast -xipo=2 -xprefetch -xalias_level=strong -
xpagesize=2m -Imopt -Im +FDO
188.ammp: -fast -xipo=2 -xarch=amd64 -xalias_level=std -
xpagesize_heap=2m -Imopt -Im
Note: FDO is feedback optimization—PASS 1= -xprofile=collect and PASS2= -xprofile=use.

5.8 Sun Fortran Compiler (64-bit) for Solaris

Table 17 shows the best-known peak switches for various programs in the SPEC-CPU2000
benchmarks for the 64-bit Sun Fortran compiler (version 5.7) for Solaris on AMD Athlon™ 64
processor-based platforms and AMD Opteron™ processor-based platforms.

Chapter 5 Peak Options for SPEC®-CPU Benchmark Programs 69

AMDZU

Compiler Usage Guidelines for AMDG64 Platforms

32035 Rev. 3.22 November 2007

Table 17. Best-Known Peak Switches for the 64-bit Sun Fortran Compiler for Solaris

Benchmark Program

Best-Known Peak Switches

168.wupwise: -fast -xipo=2 -xarch=amd64 -xprefetch_level=3

-xpagesize_heap=2m

171.swim: -fast -xipo=2 -xprefetch_level=3 -Qoption iropt
-Atile:skewp,-Ainline:cs=700 -xarch=amd64 -qoption
ube_ipa -inl_alt -xpagesize_stack=2m

172.mgrid: -fast -xipo=2 -xarch=amd64 -xprefetch_level=3 -xvector -
xpagesize=2m -Qoption Id -M,/usr/lib/Id/map.bssalign

173.applu: -fast -xipo=2 -xprefetch_level=3 -xarch=amd64 -Qoption
iropt -Aujam:inner=g -xpagesize_heap=2m

178.galgel: -fast -xipo=2 -xprefetch_level=3 -xvector=simd -

xarch=amd64 -xpagesize_heap=2m -Qoption Id -
M,/usr/lib/ld/map.bssalign -xlic_lib=sunperf

187 .facerec:

-fast -xipo=2 -xprefetch_level=3 -xpagesize=2m -
xlic_lib=sunperf

189.lucas: -fast -xprefetch_level=3 -Qoption Id -
M,/usr/lib/ld/map.bssalign -xpagesize_stack=2m
191.fma3d: -fast -xipo=2 -xprefetch_level=3 -xarch=amd64 -
xpagesize_heap=2m +FDO
200.sixtrack: -fast -xipo=2 -xprefetch_level=3 -xarch=amd64 -
xpagesize_heap=2m -Qoption Id -
M,/usr/lib/ld/map.bssalign +FDO
301.apsi: -fast -xipo=2 -xprefetch_level=3 -xarch=amd64 -

xpagesize=2m

-xprofile=use.

Note: +FDO is feedback optimization—PASS 1= -xprofile=collect and PASS2=

70

Peak Options for SPE C®-CPU Benchmark Programs

Chapter 5

	Contents
	Tables
	Revision History
	Chapter 1 Introduction
	1.1 Audience
	1.2 Intent of Document
	1.3 Definitions, Abbreviations, and Notation
	1.4 Additional Documents

	Chapter 2 List of Compiler Vendors for AMD Processors
	2.1 Compilers (64-Bit) for Linux®
	2.1.1 GCC
	2.1.2 Intel
	2.1.3 PathScale
	2.1.4 PGI

	2.2 Compilers (64-Bit) for Microsoft® Windows®
	2.2.1 Intel
	2.2.2 Microsoft®
	2.2.3 PGI

	2.3 Compilers (64-bit) for Solaris
	2.3.1 Sun

	2.4 Compilers (32-Bit) for Linux®
	2.4.1 GCC
	2.4.2 Intel
	2.4.3 PathScale
	2.4.4 PGI

	2.5 Compilers (32-Bit) for Microsoft® Windows®
	2.5.1 Intel
	2.5.2 Microsoft®
	2.5.3 PGI

	2.6 Compilers (32-bit) for Sun Solaris
	2.6.1 Sun

	Chapter 3 Performance-Centric Compiler Switches
	3.1 PGI Compilers (32- and 64-Bit) for Linux® and Microsoft® Windows®
	3.1.1 Invocation Commands
	3.1.2 General Performance Switches
	3.1.3 Optimization Switches
	3.1.4 Linking with ACML

	3.2 GCC Compilers (64-Bit) for Linux®
	3.2.1 Recommended Compiler Versions
	3.2.2 Invocation Commands
	3.2.3 Generic Performance Switches
	3.2.4 Other Switches

	3.3 Intel Compilers (64-Bit) for Linux®
	3.3.1 Invocation Commands
	3.3.2 Generic Performance Switches
	3.3.3 Other Switches

	3.4 PathScale Compilers (64-Bit) for Linux®
	3.4.1 Invocation Commands
	3.4.2 Generic Performance Switches
	3.4.3 Other Switches

	3.5 Intel Compilers (64-Bit) for Microsoft® Windows®
	3.5.1 Invocation Commands
	3.5.2 Generic Performance Switches
	3.5.3 Other Switches

	3.6 Microsoft® Compilers (64-Bit) for Microsoft® Windows®
	3.6.1 Invocation Commands
	3.6.2 Generic Performance Switches
	3.6.3 /favor Performance Switch

	3.7 Sun Compilers (64-bit) for Solaris
	3.7.1 Invocation Commands
	3.7.2 Generic Performance Switches
	3.7.3 Other Switches

	3.8 GCC Compilers (32-Bit) for Linux®
	3.8.1 Recommended Compiler Versions
	3.8.2 Invocation Commands
	3.8.3 Generic Performance Switches
	3.8.4 Other Switches

	3.9 Intel Compilers (32-Bit) for Linux®
	3.9.1 Invocation Commands
	3.9.2 Generic Performance Switches
	3.9.3 Other Switches

	3.10 PathScale Compilers (32-Bit) for Linux®
	3.10.1 Invocation Commands
	3.10.2 Generic Performance Switches
	3.10.3 Other Switches

	3.11 Intel Compilers (32-Bit) for Microsoft® Windows®
	3.11.1 Invocation Commands
	3.11.2 Generic Performance Switches
	3.11.3 Other Switches

	3.12 Microsoft® Compilers (32-Bit) for Microsoft® Windows®
	3.12.1 Invocation Command
	3.12.2 Generic Performance Switches
	3.12.3 Other Switches

	3.13 Sun Studio Compilers (32-bit) for Solaris
	3.13.1 Invocation Commands
	3.13.2 Generic Performance Switches
	3.13.3 Other Switches

	Chapter 4 Troubleshooting and Portability Issues
	4.1 PGI Compilers for Linux® and Microsoft® Windows®
	4.1.1 Interoperability Between Languages
	4.1.2 Run-Time Errors
	4.1.3 Compiled and Linked Code Generates Unexpected Results
	4.1.4 Program Gives Unexpected Results or Terminates Unexpectedly

	4.2 GCC Compilers (64-Bit) for Linux®
	4.2.1 Compilation Errors
	4.2.2 Link-Time Errors
	4.2.3 Run-Time Errors
	4.2.4 Compiled and Linked Code Generates Unexpected Results
	4.2.5 Program Gives Unexpected Results or Exception Behavior

	4.3 Intel Compilers (64-Bit) for Linux®
	4.4 PathScale Compilers (64-Bit) for Linux®
	4.5 Intel Compilers (64-Bit) for Microsoft® Windows®
	4.6 Microsoft® Compilers for (64-Bit) Microsoft® Windows®
	4.6.1 Compilation Errors
	4.6.2 Run-Time Errors
	4.6.3 Compiled and Linked Code Generates Unexpected Results
	4.6.4 Program Gives Unexpected Results or Exception Behavior

	4.7 Sun Compilers (64-bit) for Solaris
	4.8 GCC Compilers (32-Bit) for Linux®
	4.8.1 Compilation Errors
	4.8.2 Link-Time Errors
	4.8.3 Run-Time Errors
	4.8.4 Compiled and Linked Code Generates Unexpected Results
	4.8.5 Program Gives Unexpected Results or Exception Behavior

	4.9 Intel Compilers (32-Bit) for Linux®
	4.9.1 Compilation Errors
	4.9.2 Link-Time Errors
	4.9.3 Compiled and Linked Code Generates Unexpected Results
	4.9.4 Program Terminates Unexpectedly

	4.10 PathScale Compilers (32-Bit) for Linux®
	4.11 Intel Compilers (32-Bit) for Microsoft® Windows®
	4.11.1 Compilation Errors
	4.11.2 Compiled and Linked Code Generates Unexpected Results
	4.11.3 Program Terminates Unexpectedly
	4.11.4 Program Gives Unexpected Results or Exception Behavior

	4.12 Microsoft® Compilers (32-Bit) for Microsoft® Windows®
	4.12.1 Run-Time Errors
	4.12.2 Compiled and Linked Code Generates Unexpected Results
	4.12.3 Program Gives Unexpected Results or Exception Behavior

	4.13 Sun Compilers (32-bit) for Solaris
	4.13.1 Compilation Errors
	4.13.2 Compiled and Linked Code Generates Unexpected Results

	Chapter 5 Peak Options for SPEC®-CPU Benchmark Programs
	5.1 PGI Release 7.1 32- and 64-Bit Compilers for Linux®
	5.1.1 Base Command-line Options
	5.1.2 Peak Command-line Options

	5.2 PGI Release 7.1 Compilers (32- and 64-Bit) for Microsoft® Windows®
	5.2.1 Invoking the Compilers
	5.2.2 Base Command-line Options
	5.2.3 Peak Command-line Options

	5.3 SuSE GCC 4.2.0(64-Bit) C/C++ Compiler for Linux®
	5.4 Pathscale EKO 3.0 C/C++ Compiler (64-Bit) for Linux®
	5.5 Pathscale EKO 3.0 Fortran Compiler (64-bit) for Linux®
	5.6 Intel 9.0 C/C++ Compiler for (32-Bit) Microsoft® Windows®
	5.7 Sun C/C++ Compiler (64-bit) for Solaris
	5.8 Sun Fortran Compiler (64-bit) for Solaris

